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ABSTRACT

Implementation and Calibration of a k? Jet Finding Algorithm For Use in

p�p Collisions at
p
s = 1:8 TeV

By

Katherine Chiyoko Frame

Jets are widely used as probes of the fundamental parton collisions in Quantum

Chromodynamics. Jets, which are believed to represent the energies and directions

of the emerging partons, are viewed by the experimenter as collimated distributions

of hadrons. The momenta and angles of these hadrons must be combined to form

the parent jet. Because of measurement resolutions and the unavoidable presence of

backgrounds, a jet is thus dependent on the precise nature of the combination algo-

rithm. This thesis studies a new type of jet algorithm and, in particular, investigates

its dependence on the energy and pseudorapidity scales of the D� detector.
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\When the objects of an inquiry, in any department, have principles, conditions,

or elements, it is through acquaintance with these that knowledge, that is to say

scienti�c knowledge, is attained. For we do not think that we know a thing until we

are acquainted with its primary conditions or �rst principles, and have carried our

analysis as far as its simplest elements. Plainly therefore in the science of Nature, as

in other branches of study, our �rst task will be to try to determine what relates to its

principles."

Aristotle's Physics
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Chapter 1

Introduction

Throughout our history and in our individual lives, humans have endeavored to attain

some understanding of the human condition. Academic institutions are divided into

disciplines which focus on various aspects of this. Since we inhabit a physical universe

and are physical beings ourselves, it follows that we have the various branches of

physical science. In particular, Elementary Particle Physics is the study of the

fundamental building blocks of matter and the forces which govern their behavior.

At present, four forces are believed to dictate all physical interactions: gravity,

electromagnetism, the weak force and the strong force. The current Standard Model

theory encompasses all but gravity.

1.1 Fundamental Constituents of Matter

In Aristotle's day, all matter was believed to be made up of four elements: earth,

wind, �re and water. In Medieval times, a few of the Chemical elements were recog-

1



nized. By the 19th century, about 30 chemical elements were identi�ed and it was

discovered that the combinations of these elements could account for the profuse

number of chemical compounds found in nature. In the early 1800's, John Dalton

proposed that the chemical elements are composed of units (atoms) of matter which

could be characterized by their weight.

Throughout most of the 1800's, the atom was considered to be the fundamental

unit of matter. By the turn of the century, the electron had been discovered and

believed to be an essential part of atomic structure, but classical theories proved

inadequate to describe this structure. In 1900, Max Planck introduced the idea of

quantized radiation and quantum theory was born [1, 2].

The years that followed saw huge advances in both theoretical and experimental

physics. In 1905, Albert Einstein put forth his theory of special relativity and pro-

posed a quantum of light behaving like a particle [4] (later to be named photon). This

was received with much skepticism, but in 1916, Millikan published his results on

the photoelectric e�ect con�rming Einstein's photon theory [5]. Doubt still lingered,

but in 1923, Compton observed shifts in wavelengths in light scattering experiments

which could only be explained using a photon theory of light. In the same spirit,

de Broglie considered the possibility that if something previously thought to have

only wave attributes could also behave as a particle, than perhaps particles could

behave like waves. Shortly after Compton's experiments, de Broglie proposed the

wave property of matter and a couple of years later Schroedinger developed wave

mechanics for describing quantum systems for bosons.

Meanwhile, physicists were also making progress in their understanding of atomic
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structure. Hans Geiger and Ernest Marsden (under the supervision of Ernest Ruther-

ford), performed experiments in 1909 scattering alpha particles o� a gold foil. The

large scattering angles they observed suggested a small, dense, positively charged

nucleus in atoms. It wasn't until a decade later that Rutherford was able to �nd

the �rst evidence of the existence of the proton. In 1913, Niels Bohr constructed

a quantum theory of atomic structure, and then, several years later, in 1925, Pauli

formulated the exclusion principle for electrons in atoms.

In 1930, there were believed to be three elementary particles: photons, electrons

and protons. However, theoretical and experimental developments implied otherwise,

and the next few decades proved to be one of the most exciting periods in particle

physics history. A plethora of new particles were predicted and/or experimentally

observed and some of the most fundamental building blocks of the current Standard

Model theory were established, namely, the Dirac equation and the theories of weak

and strong interactions.

In 1928, Dirac was able to describe electrons combining quantum mechanics

and special relativity. After a few years, he realized that his equation implied the

existence of a new particle that is identical to the electron except that it is positively

charged. He called it a positron. No one had ever conceived of an antiparticle

before and this turned out to be an important discovery. The positron was later

experimentally observed in cosmic ray experiments in 1932.

The continuous energy spectrum seen in beta decay experiments in the late 1920's

led Pauli to suggest that an additional particle, a neutrino, carried away the missing

energy. Following that, Fermi introduced the weak interaction to describe beta decay
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using Pauli's neutrinos. This was another notable moment in our history because

this was the �rst theory to imply particle avor changes (e.g. neutron changing to a

proton plus electron plus neutrino).

The road to our current understanding of strong interactions was not so smooth.

In 1931, Chadwick discovered the neutron, but as more was learned about nuclear

structure, the mechanisms of nuclear binding became more obscure. Around 1934,

Yukawa put forth a theory combining relativity and quantum theory to describe the

strong interactions in the nucleus. He introduced a mediator particle called the pion

and estimated its mass to be about 200 times that of the electron. In 1937, a particle

with approximately this mass was discovered in cosmic ray experiments. Of course,

it was thought to be the pion, but it was much later (1946) that it was actually

discovered to be a muon. The muon was quite unexpected as it is the �rst time

a second generation of matter was observed, and the famous phrase was uttered,

\Who ordered that?" (by I. I. Rabi). Soon after the muon was revealed, however,

the pion was also observed in cosmic rays.

In the following decade, a proliferation of particles was observed, and in electron-

nuclei scattering experiments in the mid 1950's, a charge density distribution was

seen in protons and neutrons suggesting an internal structure to nucleons. In 1964,

Gell-Mann and Zweig theorized the existence of three elementary particles called

quarks [6, 7]. The up, down and strange quarks are fermions with charges of +2
3
,

-1
3
and -1

3
respectively. Many new particles could be described as combinations of

these quarks. For example, the proton is composed of two up quarks and one down

quark and the neutron is composed of two down quarks and one up quark. The third
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quark, strange, was used to build some of the more exotic particles.

In experiments at the Stanford Linear Accelerator Center (SLAC) in the late

1960's, electrons scattered o� protons appeared to be bouncing o� of hard cores

inside protons. Bjorken and Feynman used a constituent particle model to interpret

the data [3]. Although they did not refer to the constituent particles as quarks (but

as partons), this provided supporting evidence that the proton is a composite particle

and supported the quark theory.

Meanwhile, Schwinger, Bludman and Glashow independently came up with the

idea that the weak interactions are mediated by charged heavy particles (later named

theW+ andW�), and in 1967, Weinberg and Salam (again independently) developed

a theory that uni�ed the electromagnetic and weak interactions. They suggested the

existence of a neutrally charged vector boson, Z0, which (in addition to the W+,

W�) acts as a mediator of weak interactions. In an e�ort to explain the masses of

the vector bosons, they also introduced a massive scalar boson called the Higgs, H.

The W+, W�, and Z0 bosons were all observed in 1983, but the Higgs has yet to be

observed and remains a major missing piece of the current theory.

At this point, the current electroweak theory was pretty well developed, but the

theory describing strong interactions needed some modi�cation. Because the leptons

appeared in pairs, e and �e and � and ��, it was theorized that the quarks would

behave in a similar manner and the charm quark (+2
3
charge) was introduced to

be paired with the strange (the other pair being the up and down). Fritzsch and

Gell-Mann put forth the theory of quantum chromodynamics (QCD). This theory

is similar to electroweak theory. Where electroweak has the photon, W� and Z0
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as its mediators, QCD has the gluons. Evidence for gluons was �rst experimentally

observed in 1979 in electron positron collisions.

In 1974, the J=	 was discovered at Brookhaven/SLAC by Ting/Richter [8, 9].

The J=	 is composed of a charm and an anti-charm. The addition of the charm

quark implied the existence of a group of new particles which were subsequently

observed. The charm quark, itself, was observed in 1976.

With the success of the 2 generation theory, the possibilities of there existing

a third generation of quarks and leptons was theorized, and, sure enough, the Tau

lepton was discovered in 1976 at SLAC and the bottom and top quarks were observed

at Fermilab in 1977 and in 1995 respectively [10].

Today, the tau neutrino, �� , and the Higgs boson, H, are the only particles of the

Standard Model theory that have not been experimentally observed. Strong evidence

for the existence of the Tau neutrino exists while the Higgs remains somewhat more

elusive.

For the past 20 years the Standard Model theory has proven itself to be remark-

ably stable. No experimental measurement to date contradicts it. However, the

theory is not complete for it cannot account for the masses of the fermions and it

does not accommodate gravity. It is de�ned by 18 parameters making it somewhat

unwieldy, and only the electromagnetic and weak interactions are uni�ed. Several

theoretical models are being developed with a view toward completeness and uni�-

cation of the 4 forces, electromagnetic, weak, strong and gravitational.

As mentioned above, the parameters of the Standard Model theory are not com-
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pletely nailed down. Perhaps, as our measurements become more precise and we are

able explore regions of phase space previously unavailable, we will see phenomena

inconsistent with the current theory and this will guide us in a new direction.

1.2 The Thesis

Most of today's particle physics experiments are similar in principle to Rutherford's

experiment scattering alpha particles o� of a gold foil. Particles are collided at high

energies (either using two colliding beams or a beam focused on a �xed target) and

the interactions are studied by examining the outcome.

This thesis involves data from an experiment in which protons and antiprotons are

collided at extremely high energies. The high energy is needed in order to study the

constituent quarks and gluons that make up the proton and antiproton. When the

pair collide, typically, 2 or 3 jets of particles emerge and are detected. Whether there

are 2 or 3 jets detected is closely related to the strength of the strong interaction.

The original intent of this thesis was to perform a measurement of the ratio of events

with 3 jets to 2 jets, R32. This would give us a better understanding of the nature

of the strong force. We are able to look at interactions with center of mass energies

much higher than what has previously been looked at.

To make an experimental measurement of R32, a tool had to be developed and

calibrated. This task, while meritorious in itself, has diverted much e�ort away from

the intended measurement and, therefore, that analysis is left outstanding. What

is presented here is the work done developing and calibrating the k? jet algorithm
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along with some very preliminary results for our measurement of R32.

The thesis is organized in the following way. In the following chapter, we give a

brief overview of the Standard Model theory. Following that, we describe jet pro-

duction in p�p , physics and motivate the measurement of R32. Chapter 4 contains

a description of the experimental apparatus, and in Chapter 5, we will discuss jet

�nding algorithms. The momentum calibration of jets in the detector is a consid-

erable task requiring much attention, and, therefore, �ve Chapters are devoted to

its derivation, testing, and summary. Finally, we will present a very preliminary

measurement of R32.
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Chapter 2

The Standard Model

The particles of the Standard Model theory can be categorized into 4 groups: quarks

(Table 2.1), leptons (Table 2.2), vector bosons (Table 2.3) and the Higgs scalar boson

(Table 2.4). Quarks and leptons are fermions (spin 1/2 particles) and, within these

groups, there are 3 generations. The three generations are identical except for their

masses. Most matter is comprised of the �rst (lightest) generations (up and down

quarks and electrons).

As stated previously, all matter interacts via four forces (gravity, electromag-

Table 2.1: The Standard Model Quarks.

Charge Mass (MeV=c2)

up 2
3

1.5 - 5
down �1

3
3 - 9

charm 2
3

1,100-1,400
strange �1

3
60-170

top 2
3

174,300 � 5,100
bottom �1

3
4,100-4,400
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Table 2.2: The Standard Model Leptons.

Charge Mass (MeV=c2)

e� -1 0.511
�e 0 < 5:1� 10�6

�� -1 106
�� 0 < 0:27
� -1 1,777
�� 0 < 31

Table 2.3: The Standard Model Vector Bosons and their respective forces.

Force Charge Mass (MeV=c2)

 Electromagnetic 0 0
gluon Strong 0 0
W� Weak �1 80000
Z0 Weak 0 91000

Table 2.4: The Scalar Higgs Boson.

Charge Mass (MeV=c2)

H 0 > 58400 [15]
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netism, the weak force and the strong force). The current Standard Model theory

encompasses all but gravity. In the Standard Model theory, interactions are described

in the framework of the U(1)�SU(2)L�SU(3) gauge group. The electromagnetic and

weak forces are uni�ed in the electroweak gauge, U(1)�SU(2)L, and the strong force

is described under SU(3). The forces are mediated by the exchange of the vector

bosons corresponding to the symmetries of the group as shown in Table 2.3. One

scalar Higgs boson, H, is predicted (shown in Table 2.4). Its existence is not yet

con�rmed, but it is necessary to account for the masses of the W� and Z0 vector

bosons in the present theory.

What is presented here is a very minimal view of the Standard Model theory.

For a more rigorous description the reader is directed to the references, [16, 17, 18,

19, 20, 21].

2.1 Electroweak Interactions

The electromagnetic and weak interactions are uni�ed in the Standard Model under

the gauge group, U(1)�SU(2)L. U(1) symmetry implies conservation of hypercharge,

Y, and under SU(2)L, isospin, T, is conserved. Electric charge, Q, is related to these

by Q = T3 +
Y
2
where T3 is the third component of isospin. Therefore, Q is also

conserved in the electroweak gauge. The subscript, L, denotes that the SU(2) group

acts only upon the left handed component of the �eld. No right handed neutrinos

have been observed. The group acts on left handed doublets and right handed
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singlets. The lepton doublets and singlets are written as

0
BB@ �e

e

1
CCA
L

;

0
BB@ ��

�

1
CCA
L

;

0
BB@ ��

�

1
CCA
L

; eR; �R; �R :

The quark doublets and singlets are

0
BB@ u

d0

1
CCA
L

;

0
BB@ c

s0

1
CCA
L

;

0
BB@ t

b0

1
CCA
L

; uR; cR; tR; dR; sR; bR :

The bottom components of the quark doublets are di�erent from the mass eigenstates

in Table 2.1. They can be written as linear combinations of the mass eigenstates

using the CKM matrix (named after Cabibbo, Kobayashi, and Maskawa):

0
BBBBBB@

d0

s0

b0

1
CCCCCCA
=

0
BBBBBB@

VudVcdVtd

VusVcsVts

VubVcbVtb

1
CCCCCCA

0
BBBBBB@

d

s

b

1
CCCCCCA

:

This gives us some mixing between the di�erent quark generations (e.g. the up

quark can couple to the strange and bottom quarks as well as the down quark). The

couplings between the di�erent quark generations are rare and, therefore, the o�

diagonal CKM matrix elements are << 1.

In the vacuum (ground state), the U(1)�SU(2)L Lagrangian requires the four

gauge bosons to be massless. The symmetry of the ground state must be sponta-

neously broken to account for the masses of the W+, W� and Z0 bosons. This is

done through the Higgs mechanism. The result is the scalar Higgs boson and in

addition to mass, the W and Z bosons gain a longitudinal polarization component.
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The masses of the mediators and the strength of the interactions are determined

by 3 fundamental parameters: the weak isospin coupling, gw, hypercharge coupling,

g0, and the vacuum expectation value for spontaneous symmetry breaking, �. They

are given by the following relations:

gw =
e

sin �W
; (2.1)

g0 =
e

cos �W
; (2.2)

and

� =
2MW

gw
; (2.3)

where e is the magnitude of the charge of the electron, MW is the mass of the W�

and �W is the weak mixing angle. It is often convenient to express these in terms

of 3 other variables: the �ne structure constant, �em, the Fermi constant, GF , and

sin2 �W . �em and GF are related to gw, g
0, and � by

�em =
e2

4�
=

1

4�

0
@ 1

1
g2w

+ 1
g
02

1
A ; (2.4)

and

GF =
1p
2�2

=
g2w

4
p
2M2

W

: (2.5)

sin2 �W is given by the masses of the W , MW , and Z0, MZ , by

sin2 �W = 1� M2
W

M2
Z

: (2.6)

13



Current experimentally measured values for �em, GF , MW and MZ are

�em(me) =
1

137:0359895
; (2.7)

GF = 1:16639� 10�5GeV �2 ; (2.8)

MW = 80:410� 0:044 GeV=c2 and MZ = 91:187� 0:007 GeV=c2 : (2.9)

An example of a weak interaction is illustrated using a Feynman diagram in

Figure 2.1a in which an electron and an up quark exchange a W boson resulting in

an electron neutrino and a down quark. In Feynman diagrams, time runs horizontally

with some space coordinate on the vertical axis. By convention, fermions are depicted

by a solid line with an arrow pointing in the forward direction of time. An arrow

pointing in the reverse direction indicates an antiparticle. A dashed line is drawn

for W (and Z) bosons. In succeeding diagrams, photons are represented by a wavy

line and gluons by a helix as shown in 2.1(b).

�ee
�

u

W
�(a)

(b)
fermion photon W, Z gluon

d

Figure 2.1: (a) Feynman diagram for e�u ! �ed by W exchange. Time ows from
left to right. (b) Fermions are depicted by a solid line with an arrow pointing in the
forward direction of time (an arrow in the reverse direction denotes an antiparticle).
Photons are represented by a wavy line, W and Z bosons by a dashed line, and
gluons by a helix.
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The Z0 and W� are self coupling, and in addition, there are mixed couplings

between the photon, W� and Z0. The Higgs couples only to the W� and Z0 and

the fermions.

2.2 Quantum Chromodynamics

Quantum chromodynamics in the Standard Model is based on the SU(3) gauge group.

Under SU(3) symmetry, color charge is conserved. Each quark carries one of three

color indices, r; g; b = red, green, blue), and an octet of gluons carry color anti-color

charge. The group acts on color triplets for each of the six quarks. The gluon octet

can be expressed in the following color states:

j1i = (r�b+ b�r)=
p
2 j5i = �i(r�g + g�r)=

p
2

j2i = �i(r�b + b�r)=
p
2 j6i = (b�g + g�b)=

p
2

j3i = (r�r + b�b)=
p
2 j7i = �i(b�g + g�b)=

p
2

j4i = (r�g + g�r)=
p
2 j8i = (r�r + b�b + 2g�g)=

p
6 (2.10)

where r=red, b=blue, and g=green. The quark triplets are

0
BBBBBB@

ur

ub

ug

1
CCCCCCA
;

0
BBBBBB@

cr

cb

cg

1
CCCCCCA
;

0
BBBBBB@

tr

tb

tg

1
CCCCCCA
;

0
BBBBBB@

dr

db

dg

1
CCCCCCA
;

0
BBBBBB@

sr

sb

sg

1
CCCCCCA
;

0
BBBBBB@

br

bb

bg

1
CCCCCCA

:

In nature, only color singlet (i.e. colorless) quark combinations exist. Mesons are

made of quark anti-quark pairs with color anti-color respectively, qa �qa, and baryons
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consist of 3 quarks with 3 di�erent colors, �abcqaqbqc where �
abc is the antisymmetric

tensor.

Leptons (and their respective neutrinos) do not carry color and, therefore, they

do not participate in strong interactions. Only quarks and gluons interact via the

strong force. The gluons are massless and one parameter, the strong coupling, gs,

describes the interactions. In a similar manner to the weak couplings of the W� and

Z0 bosons, the gluons are self coupling.

2.3 The Running of the Couplings

The strengths of electromagnetic, weak and strong interactions are quanti�ed by

their respective coupling constants. The strength of the electromagnetic force is

de�ned by the Fine Structure Constant, �em (Equation 2.4), and the weak and

strong coupling constants, �w and �s, are given by

�w =
g2w
4�

and �s =
g2s
4�

: (2.11)

The strengths of the forces depend on the distance between the interacting par-

ticles and, therefore, these so called constants vary. For the electromagnetic force,

this can be understood if we imagine that the vacuum acts like a dielectric medium.

As the separation between two charged fermions increases, fermion antifermion pairs

(e.g. e+e�) begin to pop up in the vacuum. These pairs screen the bare charges

and give an e�ective charge that is somewhat reduced. This is referred to as vacuum

polarization. In Figure 2.2(a), this is depicted in a Feynman diagram. The fermion
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antifermion pairs are represented by a fermion loop (or bubble) in the photon prop-

agator.

(a)

(c)

(b)

Figure 2.2: Feynman loop diagrams. (a) Fermion loops in the photon propagator.
(b) W and Z loops in the Z propagator. (c) gluon loops in the gluon propagator.

At distances greater than 2:43� 10�10cm (the Compton wavelength of the elec-

tron), the electronic charge is fully shielded and �em � 1
137

. If we increase our

energy (decrease deBroglie wavelength) to 80 GeV (MW c
2), the coupling increases

to �em � 1
129

.

In the cases of the weak and strong forces, matters are complicated by the self

coupling of the force mediators. In addition to fermion loops, we have W�, Z0, and

gluon loops (see Figure 2.2(b) and 2.2(c). These compete with the fermion loops so

that the forces actually decrease as energy increases (wavelength decreases).

This was a very important discovery in QCD physics because the quarks, while

inseparable at low energy (known as con�nement), behave as free particles at very

high energies. This is referred to as asymptotic freedom.
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2.4 Cross Sections

In classical physics, the cross section for a given interaction is de�ned as the area

over which the desired interaction can take place. For example, the cross section

for an arrow hitting a target is the area of the target. The interactions we are

interested in, however, are not simply \hit or miss" interactions. Particles do not

have to \touch" to interact. In these interactions, it may be more useful to imagine

the particles as �elds (electroweak and/or strong �elds) rather than hard point like

objects. Since the forces span to in�nity, the absolute cross sections for electroweak

and strong interactions are in�nite. To make some quantitative sense out of this, we

study di�erential cross sections, d�, for various kinematical cuts. This is de�ned as

d� =
2�

�h
jM j2 � (phase space) ; (2.12)

where �h is the reduced Planck's constant, h=2� = 6:5822 � 10�22MeV sec, divided

by 2�, M is the amplitude (or matrix element). The phase space term contains

all the kinematic constraints (e.g. masses, energies and momenta of the incoming

and outgoing particles). This is handled by integrating over the 4 momenta of the

outgoing particles (in the kinematic region of interest) with a delta function included

to ensure conservation of 4 momentum. The matrix element contains the meat of the

calculation. This contains all the dynamical information about the interactions (e.g.

coupling strengths, vacuum polarization, 4 momenta of the internal propagators,

etc.).

In the case of p�p collisions, the matrix element is complicated by the fact that
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protons and antiprotons are composite particles made of partons (a generic term

for quarks and gluons). We are interested in p�p collisions in which an interaction

between one parton in the proton and one parton in the antiproton interact resulting

in 2 or more hard (i.e. energetic) partons emerging at large angles with respect to the

collision axis. The remnant partons which did not take place in the hard interaction

continue along the collision axis. An example of this is illustrated in Figure 2.3

where partons i and j (in the proton and antiproton respectively) interact producing

partons j and k (plus the proton and antiproton remnants). The matrix element

for this interaction can be factorized into two parts: the scattering amplitude which

de�nes the hard process, �̂(i; j ! k; l), and the probability that we �nd partons

i and j in the proton and antiproton respectively, fi (fj). With this, the matrix

element can be expressed as

Mi;j!k;l = fi(xi; Q
2; �F )fj(xj; Q

2; �F )�̂(i; j ! k; l) ; (2.13)

where Q2 is the momentum transfer in the hard process, and �F is the factorization

scale which de�nes the separation between interactions calculated as part of the hard

process and what gets absorbed into fi and fj. fi (fj) are called parton distribution

functions (PDFs) which tell us the probability that parton i (j) carrying proton

(antiproton) momentum fraction, xi (xj), will participate in the interaction.

Richard Feynman developed a method to calculate the scattering matrix ele-

ments, �̂. Using his diagrams, he devised a set of rules with which to calculate the

hard scattering amplitude, �̂. A full explanation of the Feynman calculus is beyond

the scope of this thesis. So we will point out just a few notable features and direct
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p

�p

�̂

remnants

remnants

i

j

k

l

Figure 2.3: Factorization of the p�p matrix element.

the reader to any one of the references, [18, 16, 17, 19, 20], for further enlightenment.

� At each vertex, 4 momentum must be conserved. In Figure 2.4a,

p�1 = p�3 + q� and p�2 = p�4 � q� : (2.14)

� At each vertex, a term proportional to g is included (gs / �s for all vertices in

Figure 2.4).

� For each internal line, a term proportional to 1=(q2�m2) is included, where q

is the 4 momentum of the propagator and m is its mass. The internal particles

are virtual particles and, therefore, q2 6= m2. Since the gluon is massless, the

propagator in Figure 2.4a is just 1=q2.

� An integration over all undetermined internal momenta is performed (the

fermion loop momenta in Figure 2.4b).

20



p1 p3

p2
p4

q

�s

�s

�s

�s

�
2
s

q

p1

p2

p3

p4

(a) (b) ?

Figure 2.4: Feynman diagrams for qg!qg via gluon exchange. (a) Lowest order
(O(�2

s)) diagram. (b) 1 Loop (O(�4
s)) diagram

2.5 Renormalization and the Strong Coupling, �s

In calculating the contributions from internal loops in Feynman diagrams, integrals

over loop momenta lead to divergences at very small momenta. To eliminate these,

additional parameters are introduced through a regularization procedure. This al-

lows us to write the divergent terms in some well-de�ned way (they still diverge in

some limit of the regularization parameters). The divergences are then removed by

absorbing them into the de�nitions of the physical quantites. Thereby, the theory is

renormalized. This has the side e�ect of introducing a new parameter, �R, with units

of energy. The exact renormalization procedure is arbitrary, but all must lead to the

same observables. Therefore, the renormalization scale, �R, plays an important role

in comparisons between theory and experiment. In this thesis, we will con�ne the

discussion to predictions using the modi�ed minimum subtraction scheme [22], MS.

The running of the strong coupling constant, �s, is determined by the renormal-

ization group equation,

Q2 @�s
@Q2

= �(�s) : (2.15)

where Q is the energy scale of the hard interaction. The � function expansion in
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powers of �s is given by [20],

�(�s) = �b�2
s

�
1 + b0�s +O(�2

s)
�
; (2.16)

where b and b0 are de�ned as

b =
33� 2nf
12�

; and

b0 =
153� 19nf
2�(33� 2nf)

: (2.17)

nf is equal to the number of quark avors available at a given Q2.

Using only the leading order term in Equation 2.17, the dependence of the strong

coupling constant, �s, on the renormalization scale, � = �R, at a given Q2 can be

written as

�s(Q
2) =

�s(�
2)

1 + �s(�2)bt
; t = ln

Q2

�2
: (2.18)

Including the next-to-leading order term, it is written as an implicit function,

1

�s(Q2)
+

1

�s(�2)
+ b0 ln

�s(Q
2)

1 + b0�s(Q2)
� b0 ln

�s(�
2)

1 + b0�s(�2)
= bt : (2.19)

Equations 2.18 and 2.19 tell us how �s varies with �R for a given Q2, but they

don't tell us the absolute value. This must be measured by experiment. Once �s has

been measured at one value of Q2, it is determined for all Q2 values. Experimentally,

�s has been measured forQ
2 values ranging from 1.5 GeV to 130 GeV. These di�erent

values are compared by scaling each value to the mass of the Z0. The current world
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Process Q (GeV) �s(Q
2)

� Decay 1.777 0:35� 0:03

p�p �(W+1jet)
�(W+0jet)

MW 0:123� 0:025

Quarkonium Decay 9.45 0:163� 0:014
e+e�! Hadrons 35 0:146� 0:03

e+e�Event Shapes 58 0:125� 0:009
34 0:14� 0:02
29 0:160� 0:012
130 0:114� 0:008

e+e�Fragmentation 91.2 0:125� 0:009
e�p! e�+Jets 91.2 0:118� 0:008
Lattice QCD 91.2 0:117� 0:003

Table 2.5: Summary of �s measurements [15].

average is [15]

�s(MZ) = 0:119� 0:002 : (2.20)

A summary of these measurements is shown in Table 2.5 and Figure 2.5. Our

measurement (if completed) would span values of Q2 from 100 to 900 GeV.

Another way of looking at this is to introduce a parameter, �, which represents

the energy scale at which the coupling diverges. This de�nes the boundary of the

perturbative domain and is de�ned by

ln
Q2

�2
= �

Z 1

�s(Q2)

dx

�(x)
: (2.21)

Expressed in terms of �, the leading order and next-to-leading order �s are

LO �s(Q
2) =

1

bL

NLO �s(Q
2) =

1

bL

 
1� b0

b

lnL

L

!
; (2.22)
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Figure 2.5: Graphical representation of the data from Table 2.5. The curve corre-
sponds to the next-to-leading order running of �s(Q

2) setting �s(MZ) = 0:119. The
region accessible using jet rates at D� is also shown.

where L = ln(Q2=�2). The value for �s(MZ) quoted above gives a value of [15]

�(5) = 237+24�26MeV ; (2.23)

calculated at next-to-leading order ((5) denotes a theoretical calculation including 5

avors of quarks).
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Chapter 3

Jet Production in p�p Collisions

At the Fermilab Tevatron, protons collide with antiprotons at a center-of-mass en-

ergy,
p
s = 1:8 TeV. Most often, these collisions result in sprays of highly energetic

particles (called jets). In this chapter, we will discuss the physics speci�c to jet

production in p�p collisions.

We begin with a quick view of a typical event in p�p collisions which produces jets.

Next, we de�ne the variables used to de�ne the kinematics of such events. Then,

we give a brief description of the Monte Carlo event generators we use to test our

methods and compare our results to theoretical predictions. Finally, we will discuss

the motivation behind the measurement of the ratio of events with 3 or more jets to

events with 2 or more jets, R32.
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3.1 p�p Collisions

So far, we have considered only simple 2 ! 2 particle reactions. What we actually

observe in proton antiproton collisions is much more complex. When a proton and

an antiproton collide at very high energies, their composite particles behave almost

independently of one another such that only two partons (one from the proton and

one from the antiproton) will most likely take part in the interaction. Two or more

partons emerge from the interaction along with the remnants of the proton and

antiproton. Immediately, these outgoing partons radiate gluons and/or produce

pairs of quarks and antiquarks in a shower of partons. Then, the partons recombine

into colorless composite particles (hadrons). The results of the collision are jets of

particles.

Let us consider an interaction where a quark from a proton interacts with a gluon

from an antiproton. The Feynman diagram for the interaction is shown in Figure 3.1.

Figures 3.2 and 3.3 depict the interaction at 3 di�erent levels before and after the

collision respectively. Before the collision, we have a proton and antiproton at the

hadronic level (Figure 3.2a). If we look a little closer, we see that the proton and

antiproton are made up of a sea of quarks and gluons (Figure 3.2b). At the most

elemental level, two partons, a quark and a gluon, take part in the hard interaction

and the others do not participate (Figure 3.2c).

After the collision, two partons emerge from the hard process (Figure 3.3a). Im-

mediately, the quark and gluon begin to radiate gluons and quark-antiquark pairs

producing a shower of partons (Figure 3.3b). These partons fragment further, re-
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Figure 3.1: Feynman diagram for qg ! qg by gluon exchange.

u

p

g

u

u

d

p

u

u

d

a).

b).

c).

Figure 3.2: A quark from a proton interacts with a gluon from an antiproton (before).
(a) At the hadron level, a proton collides with an antiproton. (b) At the parton
shower level, a sea of quarks and gluons interact. (c) At the 2 ! 2 parton level, a
quark interacts with a gluon.
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combine and form jets of colorless hadrons (Figure 3.3c).

a). b).

c).

Figure 3.3: A quark from a proton interacts with a gluon from an antiproton (after).
(a) At the 2 ! 2 parton level, a quark and a gluon emerge. (b) At the parton
shower level, jets of quarks and gluons emerge. (c) At the hadron level, jets of
hadrons emerge.

Finally, these jets of hadrons deposit their energy in the detector. Shown in

Figure 3.4 is an event as seen by the D� detector. This is a side view of the detector

(the z axis is the horizontal axis) where the transverse components (perpendicular

to the z axis) are projected onto the vertical axis. The shaded regions depict energy
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deposition in the detector and we see two large clusters of energy emerging from an

interaction vertex. The D� detector will be described in the following chapter.

D0 Side View     11-JAN-1993 10:15 Run   57023 Event    2519      5-DEC-1992 03:16

XX XXXXXX
XX

XXXX
XXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXX
XXXX

XX

XX

XX

XXXX

XX

XX

XX

XXXX

XX

XX

XXXX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

   1.<E<   2.  

   2.<E<   3.  

   3.<E<   4.  

   4.<E<   5.  

   5.<E        
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Max ET = 137.2

Figure 3.4: An event as seen by the D� detector. The z axis de�nes left to right;
the information has been averaged in �.

3.2 p�p Event Variables

The partons participating in the hard interaction do not have a �xed energy. Their

energy is some fraction of the proton or antiproton energy. This allows us to study

interactions which take place over a wide range of center of mass energies,
p
ŝ. One

drawback to this is that the center-of-mass (c.m.) frame is likely to be Lorentz

boosted with respect to the lab frame. We desire, therefore, to de�ne the kinematics
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in terms that are invariant under longitudinal Lorentz boosts.

We de�ne the z-axis to lie along the proton-antiproton beams (the axis of the

Lorentz boost). Under these conditions, for a given momentum vector, the azimuthal

angle, �, and the component of momentum in the x-y plane, PT =
q
P 2
x + P 2

y , are

both boost invariant. In addition, we de�ne a rapidity, y, which is also boost invariant

(except for an additive factor):

y =
1

2
ln
�
E � Pz
E + Pz

�
; (3.1)

where E is the energy and Pz is the longitudinal component of the vector momentum.

For massless 4 vectors, this reduces to the so called pseudorapidity, �, which is related

to polar angle, �, by

� = � ln

 
tan

�

2

!
: (3.2)

In p�p collisions, the jets of particles are produced at high energies (P >> M) and,

therefore, the pseudorapidity is approximately equal to real rapidity, � � y. Because

� is de�ned by the polar angle, �, it is much more easily measured than the real

rapidity, y. Hence, the kinematic variables used are transverse momentum, PT , the

azimuthal angle, �, and pseudorapidity, �. For historical reasons, we often refer to

the transverse momentum, PT as \ET ".

3.3 Monte Carlo Event Generators

We will describe two types of Monte Carlo event generators. The Jetrad [23] and

Herwig [24, 25] event generators provide good examples of both types and are the
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most frequently used in jet physics at D�.

As the parton shower develops, the available energy gets dispersed among the

partons. This causes the strong coupling to strengthen (�s increases) and the radia-

tion becomes soft and/or collinear. Perturbation theory requires the coupling to be

small and, therefore, at a certain point, the shower development cannot be calculated

analytically.

At present, the matrix element for p�p collisions can be calculated exactly to

O(�3
s). The Jetrad [23] Monte Carlo is one such event generator. It includes tree level

Feynman diagrams with 2 and 3 �nal state partons (no loops) and the interference

terms between the 2 parton �nal state diagrams with and without an internal loop.

An example of contributing Feynman diagrams is shown in Figure 3.5. The Jetrad

event generator includes at most 3 �nal state partons (evolution to hadrons is not

modeled).

It is also possible to rearrange the terms in the calculation so that soft/collinear

radiation terms are resummed and included in the matrix element. This calculation,

however, breaks down when the radiation is hard and produced at large angles.

Thus, it is not possible to combine the two techniques into one calculation that

would cover the full range of hard and soft parton splitting. The Herwig Monte

Carlo event generator uses a resummation calculation evolved from a 2! 2 matrix

element to predict the parton shower.

In addition to this, the process where partons recombine to form colorless hadrons

(called hadronization) is not well understood. It is approximated using a fragmen-

tation function which gives the probability of �nding a given hadron with some
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Figure 3.5: An example of O(�3
s) Feynman diagram contributions in the Jetrad

Monte Carlo event generator. Tree level Feynman diagrams with 2 and 3 �nal
state partons are included. The interference term between the 2 parton �nal state
diagrams with and without an internal loop is included too. The last term (O(�4

s))
is neglected.
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fraction of the overall momentum. Various models are used which are tuned using

experimental data and then, incorporated into Monte Carlo event generators. For

the details regarding the Herwig event generator, the reader is directed to [24, 25].

3.4 Jets

Given that energy and momentum must be conserved, we can infer the kinematics

of the partonic interaction by measuring jet properties. De�ning jets, however, is

less than straightforward. At the simple 2! 2 parton level, there are two energetic

partons well separated in �, and there is little ambiguity even as the jet evolves

through parton showering and hadronization. At O(�3
s), there can be 3 �nal state

partons. Recall that the calculation breaks down for soft and/or collinear radiation.

Therefore, jets must be de�ned in such a way so that they will be insensitive to these

splittings. Quantities which are insensitive to soft/collinear radiation are often re-

ferred to as infrared safe quantities. An ideal jet algorithm recombines soft/collinear

splittings. The speci�c jet de�nition determines which splittings are recombined,

and, therefore, the theoretical calculation for a given cross section depends on the

choice of jet de�nition. In Chapter 5, we will discuss two jet algorithms employed at

D�: the �xed cone and k? algorithms.
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3.5 R32

At lowest order, the hard scattering cross section for events with 3 �nal state partons

(jets), �3LO, is proportional to �
3
s,

�3LO(Q
2; �; J) = �3

s(Q
2; �)C3(Q

2; J) ; (3.3)

where �s is given by Equation 2.18 and C3 is constant for a given momentum ex-

change, Q2, and jet de�nition, J . Likewise, the lowest order 2 jet cross section is

proportional to �2
s,

�2LO(Q
2; �; J) = �2

s(Q
2; �)B2(Q

2; J) : (3.4)

At lowest order, therefore, the ratio of cross sections for 3 and 2 jet events, R32 is

proportional to �s,

RLO
32 =

�3LO
�2LO

=
C3(Q

2; J)

B2(Q2; J)
�s(Q

2; �) : (3.5)

This makes it possible to extract a value of �s from an experimental measurement

of R32 given the constant terms, C3 and B2. At this time, the theoretical calculation

for R32 is not available at anything other than leading order. It is only a matter

of time before theorists will be able to calculate next-to-leading order 3 jet cross

section, and we can begin to speculate as to the method of extraction based on what

is available for the next-to-leading order 2 jet cross section calculation.

At next to lowest order, we can de�ne an inclusive cross section for 2 jets (events
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where there are 2 or more �nal state partons). The matrix element is given by

��2NLO(Q
2; �) = �2

s(Q
2; �)B2(Q

2; J) + �3
s(Q

2; �)B3(Q
2; �; J) (3.6)

where the coe�cient for the �3
s term, B3, has a dependency on � given by

B3(Q
2; �) = B2(Q

2; J) ln

 
Q2

�

!
+B0

3(Q
2; J) : (3.7)

In the next to lowest order case, �s is given by Equation 2.19. The 3 jet inclusive

cross section calculation is not available at this time to next to lowest order. However,

we expect it to take a similar form,

��3NLO(Q
2; �) = �3

s(Q
2; �)C3(Q

2; J) + �4
s(Q

2; �)C4(Q
2; �; J) (3.8)

where C4 is given by

C4(Q
2; �) = C3(Q

2; J) ln

 
Q2

�

!
+ C0

4(Q
2; J) : (3.9)

Here, the ratio of 3 to 2 jet events will be given by

RNLO
32 =

C3(Q
2; J) + �s(Q

2; �)C4(Q
2; �; J)

B2(Q2; J) + �s(Q2; �)B3(Q2; �; J)
�s(Q

2; �) : (3.10)

When the next-to-leading order calculation becomes available for 3 �nal state par-

tons (i.e. C4 is calculated), we will be able to extract �s from the experimental

measurement of R32 using the above equation.

The extraction of �s is extremely sensitive to the choice of renormalization scale,
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�R. As the calculations become available to higher and higher orders, the sensi-

tivity to the renormalization scale lessens and it is possible to get a more accurate

prediction.

The measurements of �s shown in Table 2.5 are extracted using varieties of leading

order (LO), next-to-leading order (NLO), next-to-next-to-leading order (NNLO),

and resummation calculations. Almost all of the errors quoted there are totally

dominated by theoretical uncertainties due to the choice of renormalization scale,

�R, and we expect the same will be true for a measurement using jet rates at D�.

So the necessity and/or usefulness of such a measurement may come into question.

The extraction of �s from a measurement of R32 at D� probes regions of phase

space previously unavailable. And because �s is a fundamental parameter of the

Standard Model theory, such a measurement will become useful in the future when

the theoretical uncertainties are better understood.
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Chapter 4

The Tevatron and The D�

Detector

The D� collider experiment is located at the Fermi National Accelerator Laboratory.

Protons and antiprotons collide at a center of mass energy of 1.8 TeV. At this time,

the Fermilab Tevatron produces the highest energy particles in the world (excluding

cosmic rays). We present here a description of the Fermilab Tevatron Collider and

the various components of the D� detector.

4.1 The Fermilab Tevatron Collider

Protons are accelerated to 900 GeV in 5 stages:

1. Hydrogen (H�) ions are created with 750 KeV.

2. The H� ions are accelerated to 400 MeV and the electrons are stripped o�.

3. The protons are accelerated in the Booster ring to 8 GeV.
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4. The protons are accelerated in the Main ring to 150 GeV.

5. Finally, the protons accelerate in the Tevatron to 900 GeV.

The components involved in these 5 stages are shown in Figure 4.1

Tevatron

Main Ring

DO detector

CDF

AO

BO

CO

DO

EO

FO

MR P Injection

Booster

PreAcc

LinacPBar
Debuncher

PBar
Accum

PBar
Target

Tevatron
    RF

Main Ring RF

PBar Injection

Tevatron
Injection

P and PBar
Aborts

PBar 

P

Tevatron Extraction
for Fixed Target Experiments

Figure 4.1: Overview of the Fermilab Tevatron.

In the �rst stage, electrons are added to hydrogen atoms with an energy of 750

KeV (30 times the energy of electrons in a television picture tube). This is done in

an electrostatic generator called a Cockcroft-Walton.

Next, these negatively charged ions are introduced into a linear accelerator (LINAC)

made up of drift tubes with an oscillating electric �eld. The oscillations are timed

so that the ions are accelerated in bunches by a positive potential. The negative po-
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tential occurs after the ions are free of the cavity. As the ions traverse the LINAC,

the tubes become progressively longer to accommodate the increase in the speed of

the ions. As they exit the LINAC, the ions pass through a carbon foil which strips

o� their electrons resulting in a beam of protons.

The protons enter an accelerator ring called the Booster. The Booster is a 500

foot diameter synchrotron which consists of resonant frequency (RF) cavities and

magnets which bend the path of the bunches of protons into a circle. As the protons

are accelerated, the electromagnetic �eld increases to match the speed of the bunches.

The protons cycle around the Booster roughly 20,000 times before they leave with

an energy of 8 GeV.

Next, they enter what is known as the Main ring. The Main ring is buried 20

feet below ground surface in a 10 foot wide tunnel. It is 2 km in diameter and

consists of 1000 quadropole and dipole copper coiled magnets which focus and bend

the protons in the main ring. Here, the protons are accelerated up to an energy of

150 GeV before they are dropped down into the Tevatron for the �nal stage.

During the Main ring stage, some of the protons are syphoned o� and focused onto

a target (typically nickel). Antiprotons (among many other particles) are produced

in these collisions. The antiprotons are selected and directed to a Debuncher ring.

The Debuncher ring is positioned in a separate tunnel and is shaped in a triangular

ring of 500 feet per side. In the Debuncher ring, bunches of antiprotons are collected

and \cooled" to within a small range of momenta and then they are stored in the

accumulator ring directly below the Debuncher ring in the same tunnel. Once a

reasonable store has been accumulated, the antiprotons are released into the Main
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ring where they will be accelerated in opposite direction to the protons. Finally,

they too are diverted down to the Tevatron for the �nal stage of acceleration.

The Tevatron synchrotron is positioned in the same tunnel as the Main ring. It

is in this stage that the protons and antiprotons reach their maximum energy of 900

GeV. In order to produce a magnetic �eld large enough to bend the beams into a

circular path at this energy, superconducting magnets are used. The superconducting

magnets are kept cooled to a temperature of -450 degrees Fahrenheit by liquid helium.

During the data taking run (1b) on which this thesis is based, the collider was

operated with 6 bunches of protons and antiprotons (each) in the Tevatron. At two

interaction points, B� and D�, the proton and antiproton beams collide. At either

interaction point, the time between bunch crossings was 3:5�sec.

4.2 The D� Detector

The D� experiment is so named because the detector is positioned around the D�

interaction point in the Tevatron ring. The D� detector is a multipurpose collider

detector. It is a multifaceted piece of apparatus designed to measure a wide variety

of observables. A cut away view of the D� detector is shown in Figure 4.2. The

detector is made up of 4 subsystems:

� the Level Zero detector,

� the Tracking system,

� the Calorimeter, and
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� the Muon detector.

The Level Zero detector determines whether or not an inelastic collision took place

when the proton and antiproton beams cross. A particle produced in a collision will

�rst pass through the Tracking system. If it is charged, its path will be detected.

Next, it will encounter the Calorimeter where it will most likely deposit its energy.

If it is a muon, however, it is unlikely to interact with the material in the calorimeter

and it will pass through the calorimeter and its path can be traced in the Muon

detector. A magnet bends the path of the muon, and from the curvature of its path,

the muon's momentum can be inferred.

This thesis is mainly concerned with jets of hadrons which deposit their energy

in the calorimeter. Therefore, we will give only a brief description of the tracking

and muon systems and concentrate our discussion on the calorimeter. We will also

briey discuss triggering and data taking.

4.2.1 The Level Zero Detector

The Level Zero Detector is used to determine if an inelastic collision took place during

a bunch crossing. It also provides a rough estimate of the position of the interaction

vertex. Ideally, the vertex would always occur at the center of the detector (z = 0:0).

In reality, however, the vertex position is described by a gaussian with a width of

about 25 cm and an o�set of 8 cm from the center.

The Level Zero detector consists of two scintillator based hodoscopes surrounding

the beampipe on either side of the interaction region. The hodoscopes detect charged
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Figure 4.2: Cutaway view of the D� detector.
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particles. When a collision takes place, the remnants of the proton and antiproton

shower close to the beamline. By taking the di�erence in the times that the two

hodoscopes detect particles, the interaction point can be inferred.

4.2.2 The Tracking System

The tracking system consists of 3 separate detectors:

� a vertex detector (VTX),

� a transition radiation detector (TRD), and

� central and forward (in pseudorapidity) drift chambers (CDC and FDC).

A side view of these detectors is shown in Figure 4.3.

ΘΦ Central Drift
Chamber

Vertex Drift
Chamber

Transition
Radiation
Detector

Forward Drift
Chamber

Figure 4.3: The four detectors which comprise the tracking system.
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Innermost is the vertex detector (VTX) which gives a much more precise mea-

surement of the interaction point than is determined by the Level Zero detector. The

VTX has an inner radius of 3.7 cm and an outer radius of 16.2 cm. It contains 3 lay-

ers of wire chambers �lled with CO2(95%)-ethane(5%). As a charged particle passes

through the chamber, it ionizes the gas and a potential di�erence in the chamber

cause the electrons to collect on the wire and a signal is read out at both ends. The

position of the wires provide a measure of the r�� coordinate and the timing of the

readout gives the position along the beamline (z) using charge division.

In the transition radiation detector (TRD), charged particles radiate photons

when passing between regions of di�erent dielectric constants and these photons are

measured in X-ray detectors. The energy of the photons is inversely proportional

to the mass of the particle. This allows us to di�erentiate between electrons and

hadrons. The TRD consists of 3 layers of 393 polypropylene radiator foils and a

layer of X-ray detectors.

Just inside the Calorimeter, lie the central and forward drift chambers (CDC and

FDC). These operate on the same principle as the VTX.

4.2.3 The Calorimeter

The D� calorimeter (Figure 4.4) is a uranium liquid argon sampling calorimeter. It

provides exemplary coverage around the interaction region with �ne segmentation.

It was designed for ease of calibration with linear, compensating response to energy.
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Figure 4.4: Cutaway view of the D� calorimeter detector.

Particles entering the calorimeter interact with depleted uranium producing a

shower of particles. These secondary particles ionize the liquid argon and a signal

is produced on a copper readout pad. A schematic diagram of a unit cell is shown

in Figure 4.5. The absorber plates are kept at ground and a readout board with a

resistive surface is kept at 2000 V. The electron drift time across the liquid argon

gap is 450 nsec. The signal is measured by a preampli�er and is then sent to a base

line subtractor (BLS) for analog shaping. At this point, the signal is split. One is

sent to the trigger framework and the other is sent to analog-to-digital converters

(ADCs) where it is translated into energy. If the energy in the cell is within 2� of

the pedestal value, it is not read out. This zero suppression signi�cantly reduces the

number of cells read out. Otherwise, the pedestal value is subtracted and the energy

read out. The pedestal value is the average background energy measured during a

calibration run and � is the width of the distribution.
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Figure 4.5: Schematic view of a liquid argon readout cell.

The D� calorimeter is separated into 3 cryostats containing 3 separate calorime-

ters. One covers the central pseudorapidity region (CC), j�detj < 1:2, and the other

two cover the forward rapidity regions in the north and south respectively (EC),

1:5 < j�detj < 4:5. The calorimeter is also segmented longitudinally into 3 sections

in order of increasing distance from the interaction region: electromagnetic (EM),

�ne hadronic (FH) and coarse hadronic (CH).

The EM section is comprised of 4 layers of cells with 3 mm thick uranium plates in

the CC and 4 mm plates in the EC. The thickness of the layers increases going away

from the interaction with 2, 2, 7 and 10 radiation lengths (X0). The 1st, 2nd and

4th layers are segmented in ��� by 0:1� 0:1. The 3rd layer is where the maximum

shower deposition occurs for an electromagnetic object (i.e. electron or photon) and

has a �ner segmentation of 0:05� 0:05. A quadrant of the D� calorimeter is shown
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in Figure 4.6.

Figure 4.6: One quadrant of the D� calorimeter.

The FH uses 6 mm uranium-niobium(2%) plates and is comprised of 3 cell layers

in the CC and 4 layers in the EC. Its total depth is about 5 interaction lengths. All

layers are segmented in 0:1� 0:1 in � � �.

The CH uses 46.5 mm copper plates in the CC and stainless steel plates in the

EC. This amounts to 4 interaction lengths and only the most energetic particles

make it through the outer wall of the cryostats.

The calorimeter modules were calibrated during test beam runs where sections of

the calorimeter were exposed to particles with known energy. The response to energy

was seen to be linear to within 0.5% for electrons above 10 GeV and for pions above

20 GeV. The ratio of these, e=�, is remarkably close to unity (less than 1.05). The

energy resolution was found to be 15%=
p
E and 50%=

p
E for electrons and pions
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respectively.

The Inter Cryostat Region

Particles entering the area between the CC and EC cryostats may encounter very

little of the calorimetry. Two systems are placed in this region to mend this situation:

the massless gap and the inner cryostat (ICD) detectors.

The massless gap detectors are made up of signal boards placed on the steel

endplates of the calorimeters inside the cryostats. Alternating boards are set at

ground and high voltage. They detect showering in the liquid argon between the

steel endplates and the cryostat walls.

The ICD detector is positioned on the outside of the end cryostats. They are

comprised of scintillating tiles (0:1� 0:1 in � � �) and signals are read out through

bundles of wave shifting �ber.

4.2.4 The Muon Spectrometer

The Muon detector is divided into two subsystems with a total of 5 toroidal magnets.

The wide angle muon system (WAMUS) covers the central rapidity region and the

small angle muon system (SAMUS) covers the forward region. Both systems consist

of 3 layers of proportional drift tubes (PDTs). The �rst layer lies inside the toroids

and together with the tracking detectors, the incident path of a muon can be mea-

sured. After the muon's path is bent by the toroid, the deection can be measured

in the 2nd and 3rd layer PDTs and the momentum of the muon inferred.
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The muon system is also used as a loose veto when a cosmic ray muon enters the

detector during data taking.

4.2.5 The D� Trigger System

As stated in Section 4.1, p�p bunch crossings occur every 3.5�sec. Most interactions

are of little interest because they generally produce low transverse momentum ob-

jects. The D� trigger system �lters the events by making quick decisions about

whether or not a given event is of interest. There are four levels of decision making:

level 0, 1, 1.5, and 2. Each subsequent level is more discriminating yet more time

consuming. The �rst three level decisions are hardware triggers and the fourth, level

2, is a software trigger. A block diagram of these four levels is shown in Figure 4.7.
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Level

1
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Processing Time

0Detector

Level
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2

From the

10 kHzRate

200 Hz

100 Hz

Level

1.5

µs 100 - 200 ms900 ns 132 ns

Figure 4.7: Block diagram of the D� trigger system.

Level �

The level � trigger is the least discriminating. It simply looks for the break up of

the proton and antiproton in the Level Zero detector. It's e�ciency is >98%. It

also provides information regarding multiple interactions occurring in a single bunch

crossing and it measures the instantaneous luminosity.
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Level 1 and Level 1.5

The level 1 trigger is divided into two components: muon and calorimeter. The

muon trigger simply triggers on the number of muon tracks. If an event passes the

level 1 muon trigger, a level 1.5 decision is made based on the transverse momentum

of the muon. This creates a detector deadtime of one bunch crossing.

The calorimeter level 1 trigger makes fast sums of energy in towers in the calorime-

ter of 0:2�0:2 in ���. Several di�erent reference sets are used to de�ne energy cuts

on the trigger towers in various sections of the calorimeter. There are also reference

sets for energy summed in large groups of trigger towers. These are called large tiles

and cover regions of 0:8� 1:6 in � � �.

After an event passes levels 1 and/or 1.5, it is passed to the level 2 system.

Level 2

The level 2 system is a farm of 50 VAXstation 4000/60 processors running identical

executables which attempt to reconstruct each event. If the event is deemed worthy

by the level 2 software, the detector information and run conditions are written to a

disk bu�er and eventually transferred to tape.

4.2.6 O�ine Reconstruction

The raw data on tape is taken to another facility at Fermilab for processing. A

large software package has been developed which reconstructs the data (RECO).

The RECO software uses calibration information obtained from test beam data and
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various algorithms to piece together physical objects such as photons, electrons, jets,

muons, etc, from the raw detector data. Jets are reconstructed using the �xed cone

jet �nding algorithm. k? jets must be reconstructed in a separate package after the

data has been processed through RECO. The k? and �xed cone jet �nding algorithms

are described in Chapter 5. All of the data used in this thesis used data reconstructed

with version 12 of the reconstruction software (RECO v12).
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Chapter 5

The k? and Cone Jet Algorithms

In Chapter 3, we discussed jet production in p�p collisions. We showed an event

display in which two jets of hadrons deposited their energy in the D� detector

(Figure 3.4). Shown in Figure 5.1 is the same event displayed in a 3 dimensional lego

plot. The x and y axes represent � and � coordinates shown in units of calorimeter

towers, IETA and IPHI (a calorimeter tower equals 0:1� 0:1 in �� �). The vertical

axis shows the amount of energy deposited in the towers and we see two large clusters

of energy in the central part of the region along with some smaller clusters at large

absolute values of IETA.

In order to relate these clusters of energy to a simple partonic interaction, we

employ jet algorithms to reconstruct the parton momenta from the energy deposited

in the calorimeter. We present here two jet �nding algorithms used to analyze

D� data: the �xed cone and the k? jet algorithms. Compared to the �xed cone

algorithm, the k? algorithm is more amenable to jet counting, and, therefore, we

use k? jets to measure R32. The �xed cone algorithm was established prior to the
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 LEGO CAL CAEP   11-JAN-1993 10:23 Run   57023 Event    2519      5-DEC-1992 03:16

ENERGY CAEP ETA-PHI             

 EM E          

 HAD E         

Max ET = 137.2 GeV

Min E = 1. GeV

Figure 5.1: Lego plot of a 2 jet event as seen by the D� detector. The x and y axes
represent � and � coordinates shown in units of calorimeter towers, IETA and IPHI
(a calorimeter tower equals 0:1� 0:1 in � � �). The vertical axis shows the amount
of energy deposited in the towers.
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k? algorithm, however, and much of our work calibrating the k? jet algorithm is

based on results obtained previously for cone jets. So we will begin our discussion

with a brief description of the cone jet �nding algorithm. The focus of this thesis is

the implementation and calibration of the k? jet algorithm. So we will give a more

detailed account of the k? jet algorithm.

5.1 The Fixed Cone Jet Algorithm

The �xed cone algorithm de�nes a jet by the sum of the 4-momenta contained in a

�xed cone of radius, R, in ��� space (see Figure 5.2). In other words, the 4-momenta

of all particles with �R < R are included,

�Ri =
q
(�J � �i)2 + (�J � �i)2 < R ; (5.1)

where �J and �J is de�ne the center of the jet cone and �i and �i give the position of

a 4-vector inside the cone. Cone jets are found using an iterative procedure at D�

in the following way [36].

Figure 5.2: Fixed cone jet.
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1. One starts with a list of 4-momenta describing partons, hadrons, or energy

deposited in a detector.

2. A reasonably high PT particle is chosen as a beginning (called a seed).

3. A cone of radius R in � � � is drawn around the seed axis.

4. A new jet axis is found de�ned by the PT weighted � and � of the particles in

the cone,

� =

Pn
i=1 �iPT i

ET
and � =

Pn
i=1 �iPT i

ET
: (5.2)

where ET is de�ned as the scalar sum of the PT of the particles inside the cone,

ET =
nX
i=1

PT i : (5.3)

5. Steps 3 and 4 are repeated (substituting the new jet axis for the seed axis)

until a stable jet axis is found.

6. The �, and � of the jet are rede�ned by

� = � ln

 
tan

 
�

2

!!
and � = tan�1

�
PX
PY

�
; (5.4)

where

� = sin�1
�
ET

E

�
; PX =

nX
i=1

Px i and PY =
nX
i=1

Py i : (5.5)

Infrequently, two jets may be found with cones that overlap. In such cases, a

split/merge criterion must be applied to decide if the jets should be merged into one

jet or divided into two jets. At D� the jets are merged if the shared energy is less
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than 50% of the ET of the lower ET jet. Otherwise, the shared energy is divided

between the two jets and their ET �, and � are recalculated as in step 6.

It was mentioned in Chapter 3 that at present, the matrix element is calculated

to O(�3
s) only. In such calculations (e.g. Jetrad Monte Carlo events), there can be

at most 2 partons produced, and at most, 2 partons can be included in a jet. In

such cases, it is possible that the two partons are separated by some distance, r, in

� � � space such that R < r < 2R. Using the iterative method described above,

the two partons will not be combined into a single jet. After parton showering and

hadronization, however, it is possible that they will be merged into a single jet. We

introduce an additional parameter, Rsep. Then, we combine the two partons if they

are within Rsep�R of one another (typically Rsep � 1:2� 1:3). The Rsep parameter

is tuned to match what is seen experimentally in the splitting and merging of jets.

The prescription where the jet axis is de�ned by the PT weighted center and

the jet ET is de�ned by scalar summed PT (step 4) is known as the Snowmass

recombination scheme. It was agreed upon as the standard recombination scheme

for �xed cone jets during the Summer Study on High Energy Physics in Snowmass,

Colorado, in 1990. The �nal jet � and � de�nitions (step 6) were found to give

better agreement between Herwig Monte Carlo jets at the parton shower, hadron,

and detector levels and are therefore used in the D� implementation of the �xed

cone algorithm.
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Figure 5.3: k? jet clustering.
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5.2 Clustering Algorithms for e+e�Collisions

Unlike the cone jet �nding algorithm described above, clustering algorithms begin by

considering individual pairs of particles. We start with a list of 4-vectors describing

partons, hadrons or detector information. The pairs of particles are evaluated based

on some closeness criterion in phase space and the closest pair is merged into a

single 4-vector. The merged particle is compared to all the other particles and the

process is repeated until some stopping criteria has been satis�ed. This is illustrated

in Figure 5.3 and the basic steps in e+e�clustering algorithms are as follows.

1. For each pair of particles, i and j, we calculate some closeness function, yij.

2. The minimum ymin of all yij is found.

3. ymin is compared to some parameter, ycut.

4. If ymin < ycut particles i and j are removed from the list of 4-vectors and

merged into a new pseudo particle, k. ykj is calculated for all other particles

and we return to step 2.

5. If ymin > ycut, then clustering stops and we are left with a list of jets.

The �rst of such algorithms was introduced by the JADE collaboration [37, 38].

In this algorithm, the closeness function is the scaled invariant mass,

ycut > yij =
Mij

2

Evis
2 (5.6)
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where Evis is the visible energy of the event. The pair mass is calculated for massless

particles as

Mij
2 = 2EiEj (1� cos�ij) (5.7)

where �ij is the angular separation. This can result in \fake" jets when many soft

particles belonging to unrelated parton showers are combined. This is illustrated in

Figure 5.4a where clustering begins by combining 4-vectors, 1 and 2, resulting in

4-vector, a. Since the algorithm is sensitive to soft radiation, it is not infrared safe

(as was discussed in Chapter 3).

1

2

3

1

2

3

4

5

6

a

4

6

5

b

(a) (b)

Figure 5.4: Jet Clustering in e+e�Collisions. (a) The JADE algorithm. (b) The k?
(or Durham) algorithm.

59



Later, the k? (or Durham) algorithm was proposed with the argument that it has

more of a tendency to be infrared and collinear safe and is less subject to hadroniza-

tion corrections[39]. It was noticed that by simply replacing EiEj in the invariant

mass equation (5.7) by min(E2
i ; E

2
j ), the problem would be solved. Soft particles

would be merged with their nearest energetic neighbor instead of with other soft

particles. This is illustrated in Figure 5.4b where 4-vectors, 3 and 5, are combined

into 4-vector, b. For small angular separation, it can be shown that the new function

approximates the minimum relative transverse momentum,

k?;ij
2 = min

�
Ei

2; Ej
2
�
sin 2�

�= 2min
�
Ei

2; Ej
2
�
(1� cos �ij) ; for �ij ! 0: (5.8)

Thus, it was dubbed the k? algorithm with k? as the new closeness parameter.

5.3 Adaptation of the k? Algorithm for p�p Collisions

The event structure in p�p collisions di�ers from e+e� collisions and this results in

some modi�cation of the k? jet de�nition. The variables used to assign particles

(�nal state partons, hadrons or calorimeter cells) to jets in e+e� physics are the

energies, E, and the polar and azimuthal angles, � and �. In p�p collisions, the c.m.

frame of the hard process is often moving with respect to the lab frame. Thus, the

variables used must be boost invariant along the beam axis, ET = PT , � and �.

k? can be expressed in terms of boost invariant quantities in the following way
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for pairs of massless particles:

k?;ij
2 �= 2min

�
ET;i

2; ET;j
2
�
[cosh (�i � �j)� cos (�i � �j)] : (5.9)

As ��;��! 0, it can be expressed as

k?;ij
2 �= min

�
ET;i

2; ET;j
2
�
R2
ij ; (5.10)

where R2
ij = ��2 +��2.

In e+e� collisions, essentially all of the hadrons in the �nal state are thought to

be associated with �nal state partons in the hard scattering process. In collisions

producing high ET jets, all particles should be assigned to a jet. The �nal state

hadrons in p�p collisions, on the other hand, are associated not only with the �nal

state partons in the hard scattering process, but with radiation from partons in the

incident p�p pair as well as the remnants of the p�p . Therefore, not all the particles

should be assigned to the high ET jets, but many may be associated with the beam

jets (p�p remnants).

In addition to this, the c.m. energy of the hard process (de�ned as
p
ŝ) is variable

and unknown. In the Durham algorithm described above, the closeness function is

scaled by visible energy in the event,

yij =
k? ij

Evis
; (5.11)

and the stopping parameter, ycut, is dimensionless. Since Evis (
p
ŝ) is not known in

p�p collisions, we must provide an alternative prescription for stopping the clustering.
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A few di�erent modi�cations have been suggested to adapt the Durham algorithm

for use in p�p collisions [41, 40]. The k? algorithm we have implemented at D� is

based on the algorithm suggested by Ellis and Soper in [41]. Below we describe the

k? algorithm we have implemented at D�.

5.4 k? Jets at D�

Before jets are reconstructed, a preclustering of calorimeter cells is performed [42].

The k? algorithm is an O(n3) algorithm (i.e. for n particles, � n3 calculations must

be performed) and it is desirable to reduce the �6000 calorimeter cells in an average

event without severely a�ecting the physics results. In preclustering, calorimeter cells

are �rst added into towers in the calorimeter. Towers with ET <0.2 GeV have their

ET redistributed in neighboring towers. The amount of ET added to neighboring

tower ET is weighted by the neighboring tower ET . Then, all towers within 0.2 of

each other in ��� space are combined. The ET redistribution and tower merging is

done using scalar ET addition (subtraction in the case of negative ET ). In order to

have a consistent comparison to jets at the parton and hadron level, we also perform

the preclustering prior to jet reconstruction of partons and hadrons. There, parton

and hadron 4 vector information takes the place of the calorimeter towers.

After the preclustering is performed, we apply a jet reconstruction algorithm.

The jet algorithm we employ does not use a cuto� parameter, ycut. Instead, particles

are combined until all objects are separated � � � space by some value

Rij
2 > D2; (5.12)
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where i and j are jets constructed by successively combining particles. The k? jet

recombination procedure is as follows.

1. For each pair of particles (preclusters), i and j, we calculate the function

dij = minimum
�
ET;i

2; ET;j
2
� Rij

2

D2
(5.13)

where D = 1. Then we de�ne for each particle, i,

di = ET;i
2: (5.14)

2. The minimum dmin of all the di and dij is found.

3. If dmin is a dij, particles i and j are merged into a new, pseudo-particle k with

ET;k = PT;k =
q
P 2
x;k + P 2

y;k ;

�k = � ln
�
tan �k

2

�
; and �k = tan�1

Px;k
Py;k

;

with four vector Pk
� = Pi

� + Pj
�; and �k = cos�1

Pz;k
j ~Pkj

: (5.15)

4. If dmin is a di (i.e. Rij
2 > D2 for all j ), then the particle is deemed not

"mergeable" and it is removed from the list of particles and placed in the list

of jets.

5. Return to step 1. Repeat steps 1-5 until all particles have been merged into

jets (i.e. Rij
2 > D2 for all ij ). The result is a list of jets.

It is possible to employ alternate recombination schemes in step 3. We have derived

an energy scale only for the 4-vector recombination scheme described here.
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The 4-vector recombination scheme, Pk
� = Pi

�+Pj
�, is the natural choice because

it is consistent with 4-momentum conservation. As a jet evolves from a simple

partonic interaction in the hard process to a shower of particles in the detector, its

4-momentum must be conserved. It is, therefore, most appropriate to reconstruct a

jet's momentum and energy by summing the 4-momenta of the constituents of the jet.

De�ning ET = PT (versus E sin � or the scalar sum of ET of the constituents) was

decided upon because the de�nition of transverse energy is somewhat ambiguous for

jets with mass while transverse momentum, PT , is well de�ned and Lorentz invariant.

The Snowmass recombination scheme merges particles i and j into pseudo-particle

k with

ET;k = ET;i + ET;j ; �k =
ET;i�i + ET;i�i

ET;i

; and �k =
ET;i�i + ET;i�i

ET;i

: (5.16)

It was suggested as an approximation to 4-vector recombination because it expe-

dites theoretical calculations using the cone jet algorithm. For theoretical k? jet

calculations there is no such advantage.

We de�ne D=1.0 partly because this roughly corresponds to R=0.7 in the cone

jet algorithm. D=1.0 was also seen to give fairly stable results in jet rate studies

on Herwig Monte Carlo data comparing jets reconstructed from the parton shower,

�nal state hadrons, and calorimeter cells.

Ellis and Soper examined the inclusive jet cross section for 100 GeV jet ET and

j�j < 0.7 using both the k? and cone jet algorithms [41]. At O(�3
s), they found

similar results for k? jets and cone jets setting D = 1:35� R. In addition, D=1.0
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and R=0.7 reduce the renomalization/factorization scale dependence, �, for the k?

and cone jet cross sections respectively.

A Side Note on k? and Cone Jet Sizes

It is di�cult to compare the size of a k? jet to that of a �xed cone jet. Imagine a

parton shower of 3 massless partons, all 3 at equal �, equal momenta and separated

by 0.7 �. They will all be included in a R=0.7 cone jet, but the D=1.0 k? jet will

only cluster two together. From this one may conclude a R=0.7 cone jet is bigger

than a D=1.0 k? jet. Now, imagine a similar shower except this time the particle

in the center is 4 times as energetic as the other two and now they are separated by

0.8 �. In this case, at most 2 will be included in a R=0.7 cone jet, but all three will

be included in a D=1.0 k? jet. In this case, the k? jet appears to be bigger.

It is di�cult to extract any meaningful information from comparing k? jets to

cone jets. What is more important is that we are able to compare our experimental

results to theoretical predictions using the same jet algorithm. This is simply because

a jet is de�ned by the algorithm employed. The k? jet algorithm can be applied at

any level (partons, hadrons, calorimeter data) in exactly the same manner. Recall

that cone jets needed an additional parameter, Rsep, in order to compare to O(�3
s)

calculations. k? jets also have the feature that each 4-vector must be assigned to

one and only one jet in the clustering procedure. This avoids adding additional

split/merge criteria and makes the k? jet algorithm more suitable for jet counting.
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5.4.1 Monte Carlo Event Jet Rates

When the k? jet �nding procedure described above is concluded, we have a list of

jets which are well separated in � � � space. Many of these jets may be associated

with the soft interactions between the remnants of the proton antiproton pair. They

may also come from soft radiation from the partons involved in the hard interaction.

The leading-order or next-to-leading order theory cannot accommodate this soft

radiation, and if we include all the jets, we will not be able to extract �s as we

described previously. Therefore, it is necessary to make a cut to remove low PT jets

not associated with the hard process.

The probability for a parton to radiate a gluon (or split into a quark antiquark

pair) is governed by �s. This splitting is a function of the fraction of the original

parton's momentum given to the radiated gluon (or quark antiquark pair). Therefore,

we only count jets in an event if their PT is greater than some fraction of the hard

scale. To de�ne the hard scale, we sum the PT of the 3 highest PT jets in each event,

HT3,

HT3 =
3X

i=1

PT i : (5.17)

Then, all jets with PT below some fraction times the hard scale (PT < fcut �HT3)

are dropped [44],

To choose a reasonable fraction cut, we study Herwig (version 5.8) Monte Carlo

data. The Monte Carlo data is generated with 2 ! 2 parton ET thresholds of 30,

60, 120, and 240 GeV. It is processed through the SHOWERLIB [48] D� detector

simulation.
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Figure 5.5 shows fractional jet rates in Herwig Monte Carlo events as a function of

the fraction cut, fcut. We compare these rates for jets found after parton showering,

hadronization, and detector simulation. If we set fcut too high (fcut > 0:3), there

are events where only one jet passes our cut. These are events where the leading

jet carries about half the available event ET (P 1
T � HT3=2) and the remaining half

is divided roughly equally between the second and third jets (P 2;3
T � HT3=4). On

the other hand, if we choose fcut to be small, we begin to include many jets and the

agreement between the three levels begins to break down. So a reasonable choice for

fcut seems to be in the range 0:15 < fcut < 0:2. We use fcut = 0:15 because it gives

us the largest signal for R32 in this range.
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Figure 5.5: k? Jet Rates as a function of fcut in Herwig v5.8 Monte Carlo Data.
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Chapter 6

Introduction to k? Jet Momentum

Calibration

An accurate calibration of k? jet momentum is not only necessary for a measurement

of R32, but it is necessary for almost all analyses involving k? jets. Because a

variety of studies will depend on this work, it is important that the correction we

derive be widely applicable. It will also be useful to have an understanding of the

individual uncertainties and correlations associated with the various aspects of the

k? jet momentum calibration.

Deriving a momentum correction for k? jets was an unexpectedly di�cult as-

signment and as a result, we were unable to complete our analysis of R32. In many

ways, the calibration of the k? jet algorithm represents a much larger contribution

to the �eld than the measurement of R32 (had we completed it). Many subsequent

measurements will rely on the work decribed in the following chapters.

We will give a general overview of the jet momentum scale for k? jets. In the
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following two chapters, we will give a full description of the o�set and jet response

corrections. Following that, we will show the results of the Monte Carlo closure test

that was performed to test the method, and, �nally, we will present the �nal k? jet

momentum scale correction with errors.

6.1 General Overview of k? Jet Momentum Cali-

bration

Almost all analyses involving the physics of jets attempt to relate the observed

jets to a simple parton interaction. Precise calibration of measured jet momentum,

therefore, is a priority. This is not a straightforward task as the evolution from

partons to jets of hadrons to clusters of energy in the calorimeter is very complex

and riddled with theoretical unknowns and detector e�ects.

The jet momentum scale correction is an attempt to remove e�ects of the detector

as well as the physics underlying event (momentum due to soft interactions between

the remnant partons of the proton and antiproton). The goal is to approximate the

sum of all the �nal state particle momenta incorporated into a jet resulting from

the hard parton interaction. Hadronization e�ects are not corrected for here. The

analysis described in the following chapters is an attempt only to correct jets to the

particle (�nal state hadrons) level.

The method for correcting k? jet momentum is done in two steps. First an o�set

is subtracted and then a response scaling factor is applied. This can be expressed
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by the following relation

P ptcl
jet =

Pmeas
jet � EO(�;L; PT )

Rjet(�; P )
; (6.1)

where P ptcl
jet represents the \true" momentum of a jet found from �nal state particles

using the k? algorithm, EO denotes an o�set correction and Rjet is a correction for

the calorimeter jet response.

Because the de�nition of a jet is given by the algorithm employed, the calibra-

tion will depend on the choice of jet algorithm. To a certain extent, however, the

corrections can be derived generally. Previously, the jet energy scale correction was

derived for jets de�ned by the �xed cone jet algorithm [45, 47, 46] and we are able to

use the results of that study for detector e�ects that are independent of the choice

of jet algorithm. We also use results of this study to test our method for measuring

the o�set and for extrapolation into regions of phase space where we lack data for

k? jets.

The cone jet energy scale is described in great detail in [45, 46]. Since much of

the correction for k? jet momentum is based on that study, we will include it in our

discussion emphasizing the material that is relevant to the k? jet momentum scale.

From here on, we will refer to the established cone jet energy scale correction as

cafix5.1 (Calorimeter Fix Package, version 5.1).
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Chapter 7

k? Jet O�set Correction

The purpose of the o�set correction is to subtract from the reconstructed jet the

transverse momentum which is not associated with the hard interaction itself. We

divide this into two parts: the o�set due to the physics underlying event, Oue, and

the o�set due to the experimental environment, Ozb, such as noise, residual pile-up

from previous p�p crossings and multiple p�p interactions.

The underlying event contribution comes from soft interactions between the rem-

nant partons of the p�p pair which did not take part in the hard interaction.

The noise contribution arises because the average energy of the individual cells

is not zero (even in the absence of beam) due to uranium decay and electronic noise.

Although this is corrected on average by pedestal subtraction, there remains an

e�ect due to zero suppression of cells at readout combined with a non symmetric

noise distribution (for further details see [46, 51]).

Pile-up is the residual contribution from previous pp crossings. It results from

the long shaping time associated with the preampli�cation stage. The base line
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subtractor (BLS) samples the signal before the event and subtracts this amount. The

signal from previous crossings continues to decay after this sampling, and, therefore,

a residual correction is needed for a more accurate removal of the pile-up e�ects. The

Luminosity has some e�ect on the amount of signal produced by previous p�p crossings

and therefore, residual pile-up will depend on luminosity.

The multiple interaction contribution is due to soft interactions between other

p�p pairs that do not contribute to the hard collision. This also depends on luminosity.

While pile-up and multiple interactions contributions to the o�set are luminosity

dependent, the noise and underlying event are not.

In this Chapter, we present the o�set correction to be applied to jets reconstructed

with the k? algorithm. First, we will discuss the method, which is based on MC jets

with D� data overlayed. To test the method, we performed some studies using the

0.7 cone jet algorithm. We compare the results obtained using our method to the

previously obtained results from D� data [45, 46, 51]. This is shown in Appendix B.

Finally, we present the results obtained for k? jet o�sets, Ozb and Oue.

To simulate the o�set contribution to jets, we overlay D� data on Monte Carlo

data that has been processed through a D� detector simulation. The Monte Carlo

data do not include the physics underlying event and the detector simulation does not

include the e�ects of noise. Neither are the e�ects of pile-up nor multiple interaction

simulated in the Monte Carlo data. The overlayed D� data contain these e�ects,

and the o�sets are measured by comparing jets in the sample with no overlay to jets

with the overlay.
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7.1 Monte Carlo Data With Overlay

We use Herwig (version 5.9) Monte Carlo data generated with no underlying event.

Monte Carlo data (no underlying event) is generated with 2! 2 parton ET thresh-

olds of 30, 50, 75, 100 and 150 GeV. It is processed through the SHOWERLIB [48]

detector simulation.

Three di�erent types of D� data are overlayed on Monte Carlo Data. They are:

ZB zero bias data.

ZBnoL� zero bias data not passing the Level � trigger.

MB minimum bias data.

The zero bias data, ZB, have the least restrictive trigger requirements. The trigger

requires only that a bunch crossing take place and the data are taken at random

over a range of instantaneous luminosities, L. The ZBnoL� data are a subset of the

ZB data with the requirement that the event did not pass the level � trigger.

ZB data are taken for a range of instantaneous luminosities (L = 0.1, 3, 5, 10

and 14 �1030cm�2sec�1). The ZB data include the e�ects of noise, pile-up and

multiple interactions. ZBnoL� and MB data are used only at low luminosity only

(0.1 �1030cm�2sec�1). ZBnoL� data includes the e�ects of noise and pile-up, and

MB data, in addition to noise and pile-up, include the physics underlying event. At

low luminosity, very few events pass the Level � trigger, and, therefore, ZB and

ZBnoL� are almost identical.

The D� data (ZB, ZBnoL�, or MB) is added to the detector information in the
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Monte Carlo SHOWERLIB data. As mentioned earlier (4.2.3), in data taking, cells

with energy less than 2� of the pedestal value are zero suppressed (not read out).

Therefore, the overlayed data are also zero suppressed (using 0.0 as the pedestal

value). We also use the Monte Carlo sample with no overlay. In this case, the

calorimeter cells are not zero suppressed prior to reconstruction.

The overlayed and non-overlayed data are reconstructed using version 12 of the

reconstruction package (RECO v12). Finally, we reconstruct k? jets from calorimeter

cell information as described in section 5.4.

At this time we do not have data covering all luminosities, all jet ET and all jet

�. Shown in Table 7.1 is a summary of the data used in this thesis.

Type of Herwig Threshold Luminosity Jet �
Overlay ET (GeV) (�1030cm�2sec�1) Range
none 30, 50, 75, 100, 150 N/A 0.0< j�j <3.0
ZB 30 5 0.0< j�j <3.0
ZB 30, 50, 75, 100, 150 0.1, 3, 5, 10, 14 0.0< j�j <1.0

ZBnoL� 30, 50, 75, 100, 150 0.1 0.0< j�j <1.0
MB 30, 50, 75, 100, 150 0.1 0.0< j�j <1.0

Table 7.1: Availability of ET , luminosity and � for overlayed Monte Carlo data.

7.2 The Method

Let us de�ne the following notation for jets reconstructed from the various data to

be used.

xx k? jet ET in Monte Carlo with no overlay.

m0 k? jet ET in Monte Carlo with MB overlay.
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zn k? jet ET in Monte Carlo with ZBnoL� overlay.

zL k? jet ET in Monte Carlo with ZB overlay at luminosity L = L �1030cm�2sec�1

(e.g. z5 for L = 5 �1030cm�2sec�1).

As mentioned above, the ZB data include the e�ects of noise, pile-up and multiple

interactions. This contribution to a jet at a given luminosity, OL
zb, is given by

OL
zb = zL� xx: (7.1)

The MB data include the e�ects in ZBnoL� plus underlying event. Thus, the o�set

due to underlying event can be measured by

Oue = m0� zn: (7.2)

These subtractions are performed on a jet by jet basis, for the two leading jets. We

ensure the same jet is selected in both samples by requesting them to be within

a distance of 0.5 in � � � space. Figure 7.1 shows the distribution of distances,

Rmin = [(�z5 � �xx)
2 + (�z5 � �xx)]

1=2, from the leading xx jet to the closest jet in

the z5 sample.

Figure 7.2 shows a typical distribution of the energy di�erence between corre-

sponding jets in the noise overlayed (z5 in this case) and no noise sample, xx. From

the mean and RMS of this distribution we extract the o�set and its statistical error.
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Figure 7.1: Distance in � � � space from the leading xx k? jet to the closest z5 k?
jet.
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Figure 7.2: Distribution of ET di�erences between corresponding k? jets in the z5
and xx samples
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Note that leading jets in one sample do not always correspond to leading jets in

the other. Figure 7.3 plots the ET ranking number of the z5 jet associated to the

two leading xx jets (jets are numbered in decreasing order according to their ET ).

Besides the expected swapping between the leading two jets due to uctuations in the

overlayed noise, we sometimes �nd one of the leading xx jets to be associated with a

lower energy z5 jet. To reduce the e�ects of ET smearing, the events are weighted
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1 2 3 4 5 6

1
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10 2

10 3

1 2 3 4 5 6

Figure 7.3: Ranking of overlayed k? jets compared to non-overlayed jets. Corre-
sponding z5 k? jet matched to the leading (left) and second leading (right) xx k?
jet. Jets are numbered in decreasing order according to their ET .

so that we have a at jet ET distribution. The k? jet ET distributions without

weighting are shown in Figure 7.4. By using a at distribution, we eliminate uneven

contributions in a given jet ET bin due to the steeply falling and rising distributions

shown in Figure 7.4. This is discussed in more detail with respect to the 0.7 cone

jet algorithm in Appendix B.
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Figure 7.4: Distribution of reconstructed ET for k? jets without noise overlay. The
di�erent line types correspond to samples generated with parton ET thresholds of
30, 50, 75, 100 and 150 GeV.

7.3 Veri�cation of the Overlay Method

To ascertain whether the overlay method models the contributions to the o�set

correctly, we compare the occupancies in 0.7 cone jets from our Monte Carlo with MB

overlay sample to the occupancies measured in jets in a pure MB sample. Figure 7.5

shows the occupancies measured in 0.7 cone jets taken from pure MB data, and

Figure 7.6 shows the occupancies in Monte Carlo with MB overlay data. We are

only able to compare for j�j <1.0, and the y-axis scales are dramatically di�erent.

However, under close examination, one can see that the occupancies for a given jet

ET are in good agreement with the exception for jet ET �40 GeV.

In an attempt to further our understanding and con�dence in the overlay method,

we measured the o�sets, Ozb and Oue, for cone jets (R = 0:7) and compared our

measurement to the previous correction derived for 0.7 cone jets in the cafix5.1
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Figure 7.5: 0.7 cone jet occupancy vs. jet � for jets found in minimum bias data.
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Figure 7.6: 0.7 cone jet occupancy vs. jet � for jets found in Monte Carlo with
minimum bias overlay data.
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correction package [51, 45, 46]. In that study, the densities were measured in ZB,

ZBnoL�, and MB events. The o�sets were derived by multiplying densities by the

area of a �xed cone jet, � � (0:7)2 � 1:5.

In order to compare to the cafix5.1 o�sets, we measure the o�set densities, Due

and Dzb, by dividing the o�sets, Oue and Ozb, by the area of a 0.7 cone jet. This

study is described in detail in Appendix B. For the o�set due to noise, pile-up and

multiple interactions, we compared for only one luminosity, L = 5�1030cm�2sec�1.

Our results for the o�set due to underlying event, Due, are consistent with

cafix5.1 (see Figure B.4). For Dzb, on the other hand, we see a dependence on

0.7 cone jet ET which was not prescribed in the cafix5.1 correction (see Fig-

ure B.2. We believe the ET dependence that we see is due to zero suppression

e�ects that were not accounted for in the cafix5.1 correction. The zero suppression

correction used in cafix5.1 (Equation B.1) depends on the occupancy factor, Fzb

in jets. The occupancy for jets was seen to have little dependence on jet ET and,

therefore, a constant occupancy was assumed. If instead we use the small variation

in occupancy shown in Figure B.5 in the cafix5.1 zero suppression correction, we

can explain only 30% of the 0.7 cone jet ET dependence that we measure with the

overlay method.

Because our occupancies for given jet ET agree with pure MB data, we believe the

overlay correctly models the e�ects of underlying event, noise, pile-up and multiple

interactions. It is possible that the zero suppression correction used in cafix5.1

is inexact. Because the e�ects of zero suppression were not well understood when

cafix5.1 was derived, a large error was assigned. This error accommodates the
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discrepancy between our measurement and the cafix5.1 value. Because the ET

dependence for 0.7 cone jets cannot be con�rmed with pure D� data, we assign

an error to Ozb for k? jets. As stated above, 30% of the e�ect is consistent with

cafix5.1. The other 70% will be assigned as a systematic error to our measurement

for the o�set, Ozb, for k? jets.

7.4 O�sets for the k? Algorithm

At this time we do not have data covering all luminosities, all jet ET and all jet �.

Shown in Table 7.1 are the data available at this time. In the regions where we do

not have data, we will either extrapolate using the data that we have or use o�set

corrections from cafix5.1.

7.4.1 O�set Due to Noise, Pile-Up and Multiple Interactions

As stated above, we measure the o�set due to noise, pile-up and multiple interactions

using the relation,

OL
zb = zL� xx : (7.3)

Figs. 7.7 and 7.8 present the results for Ozb as a function of ET at L = 0.1

�1030cm�2sec�1 and L = 5 �1030cm�2sec�1, respectively. As opposed to the cone

case (see Appendix B), very little ET dependence is observed for the k? algorithm

and this dependence becomes weaker as the luminosity increases. Exponential �ts

were done for luminosities lower than L=5�1030cm�2sec�1.
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Figure 7.7: Measured Ozb vs. k? jet ET at L=0.1�1030cm�2sec�1.
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Figure 7.8: Measured Ozb vs. k? jet ET at L=5�1030cm�2sec�1.
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The study of � and luminosity dependence for the central region is summarized

in Figure 7.9. The general trend is that k? o�sets are 50-75% larger than for cone.

Because the k? algorithm clusters everything into jets, we would expect it to \pull"

in more noise and underlying event than a �xed cone algorithm (which excludes

energy outside the cone radius).
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Figure 7.9: Ozb o�set vs � for k? jets with 30<ET <50 GeV. The result for cones
(open circles) is shown for comparison.

To study the full rapidity range, we use a high statistics sample generated with
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Herwig v5.9 with the underlying event included. This sample was only gener-

ated in the low energy range, ET >30 GeV, and overlayed with ZB data with

L=5�1030cm�2sec�1. The Underlying event essentially cancels when taking the

di�erence z5-xx. Results are shown in Figure 7.10, for non overlayed jets with

30<ET <50 GeV.
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Figure 7.10: Measured Ozb vs. � for k? jets at L=5 and 30<ET <50 GeV (solid
symbols). The result for cones is shown for comparison (open symbols).
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and the results are shown in Figure 7.11. Linear interpolation is used for luminosities

between the values shown in Figure 7.11.

To get the �nal Ozb, these values must also be given an ET dependence at low

luminosity. This dependence is interpolated using a third degree polynomial between

L=0.1 and L=5 so that at L=0.1, the dependence is as shown in Figure 7.7 and at

above L=5.

Figure 7.12 shows the �nal Ozb vs. ET for 3 luminosities � 3 � values (with

errors). Figure 7.13 shows the � dependence of Ozb for 2 values of k? jet ET and 2

luminosities.

The error arising from the disagreement in the ET dependence between our

results of Ozb for cone jets and those shown in [45] is one of the major sources

of uncertainty especially at high energies and low luminosities (around 15%). The

functional form of Ozb contributes an error of 0.2 GeV (calculated as the average of

the largest di�erence between the points and the �ts for each curve in Figure 7.11).

To accommodate the uncertainty for energies greater than 200 GeV, we introduce

an additional uncertainty that rises smoothly from 0.0 to .2 GeV between 120 GeV

and 270 GeV and remains at above 270 GeV.

7.4.2 O�set Due to Physics Underlying Event

We measure the o�set due to underlying event using the relation,

Oue = m0� zn: (7.4)
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Figure 7.12: Ozb ET dependence and errors, for k? jets at L=1,5 and 9 and � =0.0,
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Figure 7.14 shows the physics underlying event o�set, Oue, compared to the

previous result for cone. As shown in B, there is no evidence of an ET dependence

for 0.7 cone jets, and we do not see an ET dependence for k? jets. Therefore we

will apply a correction only as a function of �.

Physics Underlying Event, Oue
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Figure 7.14: Measured Oue vs ET for k? jets. The result for cones is shown for
comparison.

Figure 7.15 summarizes the results in Oue for k? and for cone jets as a function

of jet � compared to the o�set given by cafix5.1. Unfortunately, there is no MC

available to get the o�sets beyond the central region. Therefore we must use the
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cafix5.1 result to determine the � dependence. Figure 7.15 shows Oue for k? jets

for j�j <1.0 compared to Oue given by cafix5.1 and the measured 0.7 cone Oue

(from Monte Carlo data with overlay). The good agreement in the central region

between our results for cone jets and those from cafix5.1 reinforces our con�dence

in the overlay method. Oue is consistently larger for k? jets than it is for cone jets.

We normalize the cafix5.1 o�set to our measurement for the 0.7 cone jets. Then,

we calculate the average di�erence between our measurements for the k? and cone

jet o�sets. We add this di�erence to the normalized cafix5.1 points to get the o�set

due to underlying event for k?jets. The �nal underlying event o�set, Oue with errors

is shown in Figure 7.16.

We apply a 0.1 GeV statistical error that comes from the normalization process

described above. There is a systematic error of 0.1 GeV to accommodate possible

ET dependence (from Figure 7.14). Added in quadrature, this gives us about a 10%

error in the region j�j <1.0. We will inate this to 15% above j�j >1.0 where we

have not measured Oue for k? jets. The Oue correction for k? jets (with errors) is

shown in Figure 7.16.
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Chapter 8

k? Jet Response Correction

The calorimeter is calibrated from Test Beam data based on charge deposition in the

liquid argon for known incident particle energies. In theory, the true jet momentum

and energy would simply be the vector sum of the energy deposited in the calorimeter.

In reality, however, the measured jet energies are reduced due to energy losses in

uninstrumented regions of the detector, variations in cryostat response to single

particles (e.g. non-linear response for low energy particles), and variations in the

e=� response ratio [46].

The calorimeter response to jet momentum was measured for �xed cone jets [45,

46]. There, the jet response is used to correct the scalar summed cone jet energy, E.

We correct vector summed k? jet momentum, PKt jet. The method relies on trans-

verse momentum (PT ) balance. It is, therefore, applicable to jet momentum. One

would expect the jet response to be identical for momentum and energy. However,

calorimeter showering e�ects widen jets, causing the vector summed momentum and

scalar summed energy to require di�erent corrections. This is discussed in more
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detail in Appendix C.

The jet response correction is described in 7 sections:

1. The Missing ET Projection Fraction (MPF) Method.

2. Cryostat Factor Correction.

3. E 0 !Pkt Mapping.

4. Jet Response vs. Pkt.

5. Low Pkt Jet Response.

6. ICR Correction.

7. Jet Response Errors.

8.1 The Missing ET Projection Fraction Method

Rjet is measured using -jet momentum balance in the transverse plane. To do

this, we use the missing transverse energy projection fraction (MPF) method. The

missing transverse energy, ~E/T , is the vector momentum necessary to balance the

entire event in the transverse plane. Its x and y components are given by

E/T x = �
nX
i=1

Pxi and E/T y = �
nX
i=1

Pyi ; (8.1)

where Pxi and Pyi are the x and y components of 4-momenta assigned to each

calorimeter cell (assumed massless).
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In an ideal detector, there would be no energy losses and, therefore, E/T=0.0,

~E/T = �
�
~PT + ~PT had

�
= 0 ; (8.2)

where ~PT had is the vector sum of the hadronic recoil in the transverse plane. In

reality, the electromagnetic and hadronic responses are not unity and are measured

as

~Pmeas
T = Rem

~PT and ~Pmeas
T had = Rhad

~PT had : (8.3)

~E/T is not zero and is now given by

~E/T = �
�
Rem

~ET +Rhad
~Ehad
T

�
6= 0:0 : (8.4)

The electromagnetic scale, Rem, is determined very accurately. Therefore, after the

photons are calibrated, ~E/T is given by

~E/T = � ~ET � Rhad
~Ehad
T : (8.5)

From Equation 8.2, ~PT had = �~PT, and we can write

~E/T = ~ET (Rhad � 1) : (8.6)

Hence, the hadronic response can be measured using

Rhad = 1 +MPF = 1 +
~E/T � n̂T
ET

; (8.7)

where n̂T is the unit vector for the transverse component of the photon's momentum.
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Given that the event is balanced in transverse momentum, this gives the momentum

fraction the jet measurement has lost due to imperfections in the calorimeter.

8.1.1 The Energy Estimator, E 0

Ultimately, we would like to know the response as a function of jet momentum.

However, resolution e�ects and reconstruction biases make the uncorrected jet mo-

mentum a poorly measured quantity. In order to avoid problems that may arise

from this, we look at the response as a function of a well measured quantity that is

strongly correlated with the true momentum of the jet of particles, P ptcl
jet .

At leading order a �jet event should be balanced in PT . Using this and the

relation, sin� = 1=cosh�, the ideal energy of the jet, E 0, is given by

E 0 = Emeas
T  cosh(�jet) : (8.8)

The response can then be converted to a function of k? jet momentum by mapping

E 0 to k? jet P .

The response was derived as a function of cone jet energy in CAFIX 5.1. Only

the position of the jet is used to de�ne the response as a function of E 0. We use k?

jet momentum, Pkt, because the mpf method is based on momentum balance.
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8.2 -Jet Data

The jet response was measured previously as a function of E 0 using �xed cone jets

(R = 0:7) [45, 46]. To obtain a correction for k? jet momentum, we must provide a

mapping of E 0 to Pkt. To do this, we use a subset of the data used to derive Rjet

versus E 0. Below we describe the criteria applied to the -jet data for measuring

the jet response using cone jets. Some additional considerations were necessary for

deriving the jet response correction for k? jets, and we discuss these issues below.

8.2.1 Photon Event Requirements

In order to measure the jet response, we require a jet to be balanced by a well

calibrated object. In Section 4.2.3, we noted that the electromagnetic calorimeter is

very well calibrated for electrons and pions above a certain threshold. Therefore, we

do not actually require a pure photon sample, but we need an energetic, isolated,

electromagnetic cluster. So, although we use events passing triggers designed to

accept direct photons, we use di�erent o�ine criteria to select events. Since the

majority of these electromagnetic clusters are indeed photons, throughout this thesis,

we will refer to them as photons.

Photon triggering is described in Appendix A.

Here is a list of the general o�ine criteria for the events used in our photon data.

� We select events with low instantaneous luminosity, L < 5�1030cm�2sec�1.

� A multiple interaction tool, mitool, uses information from the level �, track-
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ing, and calorimeter detectors to distinguish between events where one or more

interactions took place. We select events agged by the mitool as having only

one interaction.

� ET must be greater than the trigger threshold plus one �ET
, where �ET

is

the photon energy resolution.

� Where multiple photon triggers are running at once, a high ET threshold cut

prevents a photon event from passing a lower threshold trigger and fail a higher

threshold trigger. This removes photons which uctuated to a very high energy

in the calorimeter.

� Longitudinal and transverse isolation cuts demand that the EM cluster not be

contaminated by hadronic activity.

� Events with photons within 0.01 radians of a � crack in the calorimeter are

rejected.

� Photons in the inter cryostat region (ICR) are avoided by demanding that

j�j < 1:0 or 1:6 < j�j < 2:5.

� Events are discarded if there is main ring activity at the time of the event. A

portion of the main ring accelerator goes through the calorimeter. When the

main ring is active, radiation leaks into the detector.

� One and only one vertex must be found, and the z-vertex of the event must be

within 70 cm of the center.
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� Events where a noisy cell was removed are discarded. During reconstruction,

cells with a disproportionate amount of energy compared to their neighbors

are removed by the AIDA (Anomalous Isolated Deposit Algorithm) software.

� For ET < 30 GeV, we demand that no muon be detected. Otherwise, we

demand that any muons detected have PT� < 100 GeV. This is to avoid

bremsstrahlung radiated photons from cosmic ray muons.

8.2.2 Cone Jet Requirements

Here is a list of the general o�ine criteria for 0.7 cone jets in our -jet data used to

derive the cafix5.1 jet response.

� We remove jets whose axes are within 0.25 (in � � � space) of the photon.

� There must be at least one remaining jet in the event.

� We avoid the ICR by demanding that the leading jet � be contained in the

central cryostat, CC, or one of the end cryostats, EC (j�jetj < 0:7 for CC and

1:8 < j�jetj < 2:5 for EC).

� If the leading jet lies in the EC, we exclude the events where ET; < 25.0 GeV.

� We avoid fake jets by demanding that the fractions of jet PT in the coarse

hadronic (CHF) and electromagnetic (EMF) sections of the calorimeter be

within reasonable limits:

0:05 < EMF < 0:95

CHF < 0:5 :
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� The ET ratio between the highest and the second highest ET cells in a jet

(HCF) are required to be less than 10, HCF<10.

� We require the leading jet and  to be back to back in � (2:8 < �� < �).

8.2.3 Additional considerations for k? Jets

k? jets were reconstructed for a subset of the -jet data described above in order to

perform the E 0 to Pkt mapping. We use the same cuts on k? jets that were used for

0.7 cone jets in cafix5.1 (above) with the exceptions that we use k? jets in place

of cone jets, we require ET > 20 GeV (vs. 25 GeV) for EC jets, and we do not cut

on HCF (this information is not available for k? jets).

When the k? jets were reconstructed for this analysis, additional corrections were

applied to the cell energies in the calorimeter cryostats and inter cryostat region

(ICR) [52]. These corrections were not included when cone jets were reconstructed

and the cafix5.1 jet response was measured. The purpose of these corrections was

to scale raw EM objects. These corrections were introduced for a special reconstruc-

tion environment called D�FIX [53]. We will refer to these corrections as D�FIX

corrections from here on.

The D�FIX cryostat corrections are simple multiplicative factors which are ap-

plied at the calorimeter cell level. The D�FIX cryostat factors for the north (ECN),

central (CC), and south (ECS) cryostats are shown in Table 8.1. A k? jet in a given

cryostat will have a jet response that is higher (by the appropriate factor) than the

cafix5.1 jet response. To correct k? jets, therefore, we multiply the cafix5.1 jet
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response by 1.0496 (the CC D�FIX factor) and adjust jet correction in the north

and south cryostats, FN
cry and F S

cry, to accommodate the D�FIX factors.

D�FIX Cryostat Factors
ECN CC ECS
1.0609 1.0496 1.0478

Table 8.1: Cryostat corrections applied to the energy in the calorimeter cryostats
introduced for the D�FIX environment.

The D�FIX corrections to the inter cryostat region (ICR) are not so straightfor-

ward. So we use jet PT balance in two jet events to determine an ICR correction.

8.3 Cryostat Factor Correction

The jet response varies in the di�erent � regions of the calorimeter. To eliminate

these variations, we correct the k?jet momentum, Pkt, so that uniform (in �) jet

response correction may be applied. The cafix5.1 jet response we will use has been

corrected for the � dependent factors (cryostat and ICR) using 0.7 cone jets. The �

dependent corrections were applied to 0.7 cone jets and the event E/T was corrected

for the change in 0.7 cone jet momentum, and the jet response, Rjet = 1+MPF , was

measured. Once this is done, Rjet can be described by a single curve as a function

of E 0.

The jet response is measured for jets found in the central calorimeter cryostat,

CC (j�j <0.7), and the end cryostat, EC (1.8< j�j <2.5). The cryostat factor, Fcry,

(not to be confused with the D�FIX factors) is de�ned as the ratio REC
jet =R

CC
jet . It

should not depend on the jet algorithm except where the jet pseudorapidity is needed
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to determine the jet's position in the CC or EC. The value of Fcry using 0.7 cone

jets was found to be

Fcry = 0:977� 0:005 (stat) for RECOV12 :

To verify that no complications arise from using a subset of the data or using

k? jets to determine pseudorapidity and to correct event E/T , we remove the D�FIX

cryostat corrections from k? jets, correct the EC jets with Fcry=0.977. We correct the

event E/T for the change in k? jet momentum. The resulting jet response is consistent

with the cafix5.1 jet response with good agreement in the overlap region between

central and forward jets (Figure 8.1).

Because the D�FIX correction factors are di�erent in the north and south cryostats,

we will have di�erent jet response cryostat factors. The ratio of north to south

cryostat factors without the D�FIX corrections was measured to be FN
cry=F

S
cry =

0:997� 0:003 [45]. We assume that the value Fcry=0.977 is the average of F
N
cry and

F S
cry. When we incorporate the D�FIX cryostat factors, we get north and south

cryostat factors of FN
cry=0.986 and F S

cry=0.977.

8.4 E0
!Pkt Mapping

Before mapping E 0 to Pkt, we subtract the o�set from the jets. Then, we correct

for the cryostat factors, FN
cry=0.986 and F S

cry=0.977. We map jets in the CC and

EC separately and because jets in these two regions may fall partially into the ICR,

we also include the � dependent ICR correction. We will discuss in detail how we
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Figure 8.1: Response versus E 0. Open symbols are from the full -jet data sample
and solid symbols are from the smaller sample reconstructed with k? jets. The
additional D�FIX cryostat corrections were removed from k? jets.
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derived this correction for k? jets in section 8.6. The jet response has been corrected

for the ICR using 0.7 cone jets. So this correction is only necessary for the mapping

of E 0 to Pkt.

Once the jets have been corrected for the o�set and the eta dependent jet re-

sponse corrections, the average Pkt is binned in E 0 and plotted as a function of E 0

(Figure 8.2). We �t a straight line (ax + b) to the CC and EC jets separately. The

�t parameters for the CC and EC are shown in Table 8.2. The results of the �ts are

shown in Figure 8.2 with �2/d.o.f. = 2.29 in the CC and �2/d.o.f. = 1.11 in the EC.

E 0 !Pkt Mapping Parameters
CC EC

a 0.835 � 0.009 0.838 � 0.014
b 2.465 � 0.392 4.522 � 2.008

Table 8.2: Fit parameters for E 0 to Pkt mapping.

8.5 Response vs. Pkt

To accommodate the D�FIX corrections to the cryostats, the cafix5.1 jet response

is scaled by the D�FIX CC factor. Using this and the mapping parameters above,

we translate the Rjet versus E
0 data to Rjet versus Pkt. We �t Rjet versus Pktusing

the same functional form that was used in cafix5.1,

Rjet(Pkt) = a + b � ln(Pkt) + c � ln (Pkt)2 (8.9)
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Figure 8.2: k? jet P versus E 0. Straight lines were �t to the CC and EC separately.
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We use a Monte Carlo point to constrain the �t at high momenta. We use the

same Monte Carlo point that was used in cafix5.1 except we multiply both the jet

momentum and the jet response by the D�FIX CC cryostat factor. The result of

the �t is shown in Figure 8.3.

Figure 8.3: Rjet versus Pkt. The outer band shows limits on the measured jet response
for high momentum jets based on the region in parameter space de�ned by the
�2 = �2

min + 3:5 surface. This region corresponds to the 68% con�dence region of
parameter uctuations from the nominal values.

The data were �t for Pkt > 30 GeV. The �t parameters are shown in Table 8.3.

For comparison, the �t is shown in Figure 8.4. We also show the k? Rjet �t divided
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Jet Response Parameters

Rjet(Pkt) = a + b � ln(Pkt) + c � ln (Pkt)2
a b c

0.7174 � 0.0518 0.0399 � 0.0233 -.0007 � 0.0026

Table 8.3: Fit parameters for k? jet hadronic response correction.

by the D�FIX CC factor (with Pkt also divided by the D�FIX CC factor) for shape

comparison with the �ts for the cone algorithm. The single parameter errors show

one standard deviation uncertainties as calculated from the �2 = �2
min+1 surface in

the parameter space. �2/d.o.f. = 0.650 for the �t.

8.6 ICR Correction

The cryostat factor, Fcry, is intended to put the end calorimeter cryostats on the

same footing as the central cryostat. We wish to do the same in the ICR. To do this

we use transverse momentum balance in di-jet events. The method is similar to that

used to measure the hadronic response, but here, the central jet plays the role of the

photon.

8.7 Jet-Jet Data

The jet-jet data used to determine the � dependent correction in the ICR to the jet

response is taken from events passing the inclusive jet triggers (triggers requiring

one or more jets in an event). These triggers are described in Appendix A.

Here is a list of the criteria for k? jets in our jet data.
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Figure 8.4: Response �t versus jet Pkt. Rjet(Pkt) = a+ b � ln(Pkt) + c � ln (P )2.
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Data Sample PT2 cut (GeV)
JET MIN 30.0
JET 30 55.0
JET 50 90.0
JET 85 120.0

JET MAX 175.0

Table 8.4: Second highest jet PT requirements for triggers.

� We select events with low instantaneous luminosity, L < 5�1030cm�2sec�1.

� We select events agged by the mitool as having only one interaction.

� Events passing a given jet trigger must be fully e�cient for the second highest

PT jet [49]. This removes resolution biases in the forward region. A list of jet

triggers and the PT cuts are shown in Table 8.4.

� There can be one and only one vertex found, with jzj < 50 cm.

� We demand two and only two reconstructed jets (no third jet with PT > 15

GeV.

� We demand at least one jet with j�jetj < 0.5.

� The missing transverse energy in the event, E/T , must be less than 70% of

the leading jet PT ,
E/T
ET1

< 0.7. E/T is the magnitude of the vector momentum

necessary to balance the entire event in the transverse plane. It is de�ned by

E/T = �
vuut nX

i=1

Pxi

!2

+

 
nX
i=1

Pyi

!2

: (8.10)
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8.7.1 Measurement of F�

We correct the k? jets for the cryostat factor and correct the event E/T using the

change in k?jet momentum. The relative jet response of the forward jet with respect

to the central jet, Rrel
meas, is measured as in photon events substituting the central jet

for the photon:

Rrel
meas(E; �) = 1 +

~E/T � �̂central jet
PT

central jet : (8.11)

In a uniform detector and at leading order, the momentum of the forward jet would

be given by P � = PCC
T cosh�. The ideal relative jet response, Rrel

calc, for the two jets

could be calculated using the jet response as a function of Pkt by

Rrel
calc(P; �) =

Rjet(P
CC
T cosh�)

Rjet(PCC)
: (8.12)

Thus, the � dependent ICR correction, f�, is simply the factor needed to correct

Rmeas to Rcalc.

Using the �t to Rjet(Pkt), we compare Rmeas to Rcalc in Figures 8.5 and 8.6.

To parameterize the correction factor, f�, we look at � bins of 0.1 in the regions

-2.0< � <-0.5 and 0.5< � <2.0. For each bin, we plot the correction factor as a

function of the average PT of the forward jet in a given bin for a given trigger. We

�t these with a straight line and these �ts are used to determine f� as a function of

jet PT for each � (see Figures 8.7 and 8.8). After the correction is applied, Rmeas

agrees well with Rcalc (see Figure 8.9).

As previously mentioned, the cafix5.1 jet response has been corrected for the �
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Figure 8.5: Response versus � >0.0 for jet-jet data.
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Figure 8.6: Response versus � <0.0 for jet-jet data.
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Figure 8.7: Correction factor F� as a function of central jet PT for positive �. The
solid straight line is a �t to the data. The dotted line is the cafix5.1 correction for
0.7 cone jets.
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Figure 8.8: Correction factor F� as a function of central jet PT for negative �. The
solid straight line is a �t to the data. The dotted line is the cafix5.1 correction for
0.7 cone jets.
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Figure 8.9: Response versus � after � dependent corrections.
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dependent factors (cryostat and ICR) using 0.7 cone jets. Therefore, the corrections

derived here will have no bearing on Rjet versus E
0. They can, in principle, e�ect the

Rjet versus Pkt �t via their e�ect on the mapping of E 0 to Pkt(k? jets are corrected

for the o�set, cryostat factor, and ICR dependencies prior to mapping). This e�ect

on the �t is negligible as seen in Figure 8.10

Figure 8.10: Response �t versus jet E with and without the ICR correction.
Rjet(E) = a+ b � ln(E) + c � ln (E)2. The two curves are virtually identical.
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8.8 The Low ET Bias

The minimum ET reconstruction threshold for 0.7 cone jets is 8 GeV. The jet

reconstruction e�ciency for this threshold does not reach 100% until 20 GeV. This,

combined with a steeply falling jet ET distribution, leads to biases in the jet response

measured using the MPF method.

To remove this bias, the jet response was measured as a function of ET (instead

of E 0) with no jet requirements. The bias is estimated using

Rbias =
RJet(� 1 jet)

RJet(no jet required)

; (8.13)

where the numerator is measured as described in Section 8.1 with the jet required to

be in the CC. Since the denominator has no jet requirement, the hadronic recoil is

unrestricted and may lie in the EC or ICR making the numerator and denominator

inconsistent. To reconcile this, Rbias is normalized to unity for ET > 20 GeV(where

the reconstruction e�ciency for jets is 100%).

The jet response, Rjet, is corrected in the following way. First, the 0.7 cone jets

(in the CC) are corrected by the inverse of Rbias. Then, the event missing ET is

corrected for the change in the 0.7 cone jet momentum, and Rjet is measured with

the corrected ~E/T .

The three lowest points in Figure 8.3 have been corrected for this bias. The large

error bars reect the uncertainty determined from a Monte Carlo simulation where

the resolutions, e�ciency and reconstruction parameters were varied.
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8.9 Low Pkt Jet Response

In this study, we included k? jets with PTjet > 2 GeV. We hoped to avoid the Low

ET bias described above because this threshold is considerably lower than the 8 GeV

threshold used for �nding cone jets. Unfortunately, it is di�cult to extract a hard

2-to-2 process involving a photon and a jet at low momentum. When the jet response

is low, a jet's position resolution is also poor. A jet and a photon resulting from a

2-to-2 process will less likely be found back to back if the jet response is low than

if it is high. This is the case for low energy events as demonstrated in Figure 8.11

where �� jet (�� jet = j�j � j�jetj) is shown for low and high momentum k? jets.

In addition to this, we see that for ET < 20 GeV, the 1st, 2nd and 3rd jets

appear to have similar PT distributions making it di�cult to di�erentiate between

jets coming from the hard process and spurious jets reconstructed from underlying

event and noise. Figure 8.12 shows the PT distributions of k? jets (excluding k? jets

reconstructed from the photon) for a range of ET .

Some attempt was made to pronounce the structure of these events. We tried

loosening the back-to-back cut and allowing (in addition to the leading jet) the

2nd or 3rd jet to balance the photon. While this was e�ective in unbiasing the

jet response, it wasn't very useful in achieving the ultimate goal of jet momentum

calibration because it also allows events where more than one object balances the

photon. In addition, questions are raised as to how to treat jets in such events where

it is di�cult to discern between a hard interaction and underlying event and noise.

121



Figure 8.11: �� jet normalized distribution for k? jets (�� jet = j�j � j�jetj).
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Figure 8.12: ET distribution of k? jets. Solid lines show ET distributions and
dotted and dashed lines show ET distributions of the 1st, 2nd and 3rd jets.
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So, although we do not have a bias due to the reconstruction threshold, it appears

that we do introduce a topology bias at low energy by requiring the leading jet and

photon to be back to back. This causes us to reject events where the jet's position

and/or momentum is mismeasured due to low jet response and we bias ourselves

toward higher jet response.

We do not apply a correction to the low PT k? jets as is done for cone jets. Unlike

the low ET bias for cone jets, the topology bias is apparent only when we try to

measure the response using the MPF method. Because the cafix5.1 jet response

at low energy was derived using data with no jet requirement (Equation 8.13), it is

considered to be free of this topology bias. We use the unbiased jet response derived

for cafix5.1 and assign an additional error due to the e�ect of unbiasing. The error

bars on the three lowest energy points in Figures 8.3 and 8.13 reect this error.

The jet response is �t for Pkt above 30.0 GeV and, therefore, the low momenta

data do not a�ect the result of the �t. The low momenta data diverge from the

extrapolated �t (see Figure 8.13a). To correct for this, we �t the function, f(x) =

1+a(x�35)2, to the ratio of the extrapolated �t to the low energy data, Re�f=Rlow.

Dividing the extrapolated �t by this function, Re�f=f(x) provides a jet response

curve for the low energy data which matches both slope and function at 35 GeV

with Re�f (see Figure 8.13b). We match the �ts at 35 GeV instead of 30 in order to

get a smooth match.

124



Figure 8.13: Low momentum jet response vs. Pkt. (a) The solid line is the extrapo-
lated �t. Dotted lines depict errors on the �t. (b) The solid line is the jet response
used to correct jets. The dashed lines show the errors (as a function of PT ).
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8.10 The Jet Response Errors

8.10.1 Errors and Correlations of the Rjet Fit

To determine an error for the response function, a surface de�ned by �2 = �2
min+3:5

is mapped out in parameter space. For three parameters, this contains a region

with a 68% probability for parameter uctuations [54]. The points lying on this

surface are then mapped back onto the jet response versus momentum plane. At a

given momentum, the error is determined by the parameter set giving the greatest

deviation from nominal jet response. The high and low errors are calculated for

11 points, (10, 20, 35, 50, 75, 100, 150, 200, 300, 400, and 500 GeV). The error is

interpolated for energies between these 11 points. The result for the k? jet algorithm

is shown in Figure 8.3. The outer band represents the error on the �t to the jet

response.

The �t error described above gives the maximum deviation at each Pkt value

for all the �t parameters within the 68% con�dence level. The parameter set that

gives this deviation at one value of Pkt does not necessarily induce the same e�ect at

another value and it is highly unlikely that one set of parameters will produce either

of the error curves shown in Figure 8.3. We do expect, however, that the errors for

two points close in Pkt will be largely correlated.

To quantify the correlations between di�erent values of Pkt, we generate a corre-

lation matrix in the following way.

� We map out a grid in parameter space de�ning the �2 � �2
min + 3:5 volume.
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Each parameter set in this volume de�nes a response function contained within

the bands shown in Figures 8.3.

� The correlations are calculated for an 11 � 11 matrix. We loop through all

the parameter sets in the volume and calculate response at eleven values of Pkt

(corrected for o�set and � dependence) between 10 and 500 GeV. The matrix

elements are the standard correlation coe�cients, r(i; j), between the responses

measured at each energy value. r(i; j) is de�ned as:

r(i; j) =

PNgrid

n=1 (Rn(i)� R(i))(Rn(j)�R(j))

[
PNgrid

n=1 (Rn(i)�R(i))2
PNgrid

n=1 (Rn(j)� R(j))2]
1

2

; (8.14)

whereNgrid is the number of parameter sets in mapped out in the �
2 � �2

min + 3:5

volume and Rn(i) is the response for the i
th energy bin calculated with the nth

parameter set.

The correlation matrix for the jet response �t to k? jets is shown in Table 8.5.

Correlations are illustrated graphically in Figure 8.14 where four rows of the matrix

are plotted showing the error correlations relative to the errors at 35, 50, 100, and

500 GeV respectively.

8.10.2 Low Momentum Errors

For the error due to the unbiasing of the jet response (the error bars), �b, we used

the function, f(x) = a(x � 35)2, where a is de�ned such that the error decreases

from 3% to 0 from 15 GeV to 35 GeV. This comfortably accomodates the error bars.

This is added in quadrature with the errors on the extrapolated �t, �e�f for the low
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Figure 8.14: Error correlations for k? jet response �t. Error correlations are shown in
four slices from the full correlation matrix. The four curves show the point-to-point
correlation of �t errors relative to momentum values of 35, 50, 100, and 500 GeV
respectively.
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Correlations for Fit Error, k? Jets, Reco 12
P(GeV) 10 20 35 50 75 100 150 200 300 400 500

10 1.00 0.97 0.62 -0.32 -0.63 -0.56 -0.29 -0.06 0.23 0.37 0.45
20 0.97 1.00 0.77 -0.15 -0.57 -0.56 -0.36 -0.16 0.10 0.23 0.31
35 0.62 0.77 1.00 0.49 -0.04 -0.17 -0.20 -0.15 -0.06 0.00 0.03
50 -0.32 -0.15 0.49 1.00 0.82 0.67 0.42 0.24 0.04 -0.06 -0.12
75 -0.63 -0.57 -0.04 0.82 1.00 0.96 0.78 0.59 0.33 0.19 0.10
100 -0.56 -0.56 -0.17 0.67 0.96 1.00 0.92 0.78 0.56 0.42 0.33
150 -0.29 -0.36 -0.20 0.42 0.78 0.92 1.00 0.96 0.84 0.74 0.67
200 -0.06 -0.16 -0.15 0.24 0.59 0.78 0.96 1.00 0.95 0.89 0.84
300 0.23 0.10 -0.06 0.04 0.33 0.56 0.84 0.95 1.00 0.99 0.97
400 0.37 0.23 0.00 -0.06 0.19 0.42 0.74 0.89 0.99 1.00 1.00
500 0.45 0.31 0.03 -0.12 0.10 0.33 0.67 0.84 0.97 1.00 1.00

Table 8.5: Correlation matrix for error band in hadronic jet response correction for
k? jets.

error (high in jet P). The high error (high jet P) is the low error added in quadrature

with the di�erence between the extrapolated �t and the actual �t.

�low =
q
�2b + �2e�f

and �high =
q
�2b + �2e�f + �2diff (8.15)

The correction to the extrapolated �t is applied as a function of momentum.

However, the uncertainty is applied as a function of PT rather than P to account for

forward jets whose momentum may be above 35 GeV but whose PT may be below

35 GeV.

8.10.3 � Dependent Correction Errors

We apply a 0.6% error on FN
cry and F

S
cry. This is due to the 0.5% error on Fcry added

in quadrature to the 0.3% error on FN
cry=F

S
cry. No additional error need be considered

given that the D�FIX cryostat factors are known and de�nite.
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� Region Mean RMS N RMS/
p
N

j�j <0.5 0.0028 0.0113 25 0.0023
0.5< j�j <1.0 0.0061 0.0101 25 0.0020
1.0< j�j <1.5 0.0083 0.0213 25 0.0043
1.5< j�j <2.0 -.0005 0.0186 24 0.0038
2.0< j�j <2.5 -.0146 0.0320 18 0.0076
2.5< j�j <3.0 -.0107 0.0500 11 0.0151

Table 8.6: Residuals from Figures 8.15 nd 8.16.

To measure the accuracy of the ICR correction, we apply the cryostat corrections

and the ICR correction and compare Rmeas to Rcalc. Figure 8.15 shows the fractional

di�erence. The distribution of these fractional di�erences is plotted in the 6 � regions

shown in Figure 8.16. The mean, rms, number of entries, N, and rms/
p
N are shown

in Table 8.6. The correction is applied in the region for 0.5< j�j <2.0. We assign

a 1% error to the correction based on these values and introduce an additional �

dependent error that turns on at j�j =2.5 and increases linearly up to 3% at j�j =3.
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Figure 8.15: The fractional di�erence between Rmeas and Rcalc for partially corrected
jets. �R = (Rmeas � Rcalc) / Rcalc.
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Figure 8.16: The distributions of fractional di�erences between Rmeas and Rcalc.
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Chapter 9

K? Jet MPF Closure

The missing transverse energy projection fraction (MPF) method is tested using

the Monte Carlo -jet events which are processed through a simulation of the D�

detector. k? jets are reconstructed from parton shower, hadrons, and calorimeter

information. The photon energy, E found at the calorimeter level is corrected to

E prior to detector simulation, and the event E/T is adjusted.

A k?jet momentum correction is derived by applying the MPF method to the

Monte Carlo calorimeter information. The jet correction is applied to calorimeter

level k?jet momentum, Pmeas
kt , and the corrected momentum is compared to the

nearest k? jet found at the particle level, P
ptcl
kt . Closure is obtained when the corrected

calorimeter jet momentum agrees with the hadronic jet momentum,

Pmeas
kt

P ptcl
kt

= 1 : (9.1)

The closure test was performed using cone jets and closure was attained within
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errors [45, 46]. As a reference we include comparisons to 0.7 cone jets in our analysis.

We attain closure in the central region for k? jets, but we see a small excess in the

forward region. We attribute this excess to misclustering of energy in calorimeter

jets. We are unable to measure this e�ect in D� data, but we can estimate the

uncertainty.

9.1 The Data

We use Herwig (version 5.7) Monte Carlo -jet data generated with underlying event.

Monte Carlo data is generated with -jet ET thresholds of 7, 15, 30, 75, 150,

300, 500 and 700 GeV. It is processed through the SHOWERLIB [48] D� detector

simulation and reconstructed using version 12 of the reconstruction package (RECO

v12). Then, we reconstruct k? jets as described in Chapter 5 with the requirement

that the transverse momentum, PT , must be above 4 GeV for samples generated

with ET threshold at 7 GeV and above 8 GeV for the rest of the sample.

9.2 Monte Carlo Jet Corrections

9.2.1 Monte Carlo Underlying Event O�set

The Monte Carlo data does not include the e�ects of noise, pile-up or multiple

interactions, but it does include a Monte Carlo physics underlying event. Therefore,

we must subtract an o�set only for the Monte Carlo underlying event.

The o�set due to physics underlying event for k? jets was seen to be approximately

134



Underlying Event Densities
CC EC

Calorimeter 0.57 0.57
Hadron 0.53 0.50

Table 9.1: Herwig v5.9 underlying event energy density.

30% larger than it was for cone jets. We estimate the o�set for k? jets in Monte

Carlo data by multiplying a density by the 0.7 cone area and then scaling up by 30%.

The measured energy density due to underlying event was measured in HERWIG

v5.9 data generated with and without the underlying event present. These densities

were derived by measuring the average di�erence of energy in � rings in the detector

(divided by the area in � � �) with and without the presence of underlying event.

The physics underlying event in HERWIG versions 5.7 and 5.9 are the same. The

underlying event energy densities are shown in Table 9.1.

9.3 Monte Carlo Jet Response

The jet response is measured as described in the previous chapter except we do not

apply the ICR correction, F�, and we only focus on the central (j�j < 0:7) and

forward (1:8 < j�j < 2:5) regions.

9.3.1 Monte Carlo Cryostat Factor

First, we determine the cryostat factor, Fcry = REC
jet =R

CC
jet , for the Monte Carlo data.

Figure 9.1 shows the cryostat factors derived using k? and 0.7 cone jets to de�ne E 0.

F cone
cryo = 1:039� 0:004 and F k?

cryo = 1:033� 0:004 agree within statistical errors.
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Figure 9.1: Monte Carlo Cryostat Factor. Circles are for k? jets and squares are for
cone jets. Solid line is a �t to constant for the k? jet points; dashed line is a �t to
constant for the cone jet points. Errors are statistical only.
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Algorithm a b c �2=dof
K? 0.794 � 0.013 0.0244 � 0.0044 -0.0014 � 0.0004 18.8/16

Table 9.2: Fit parameters for Rjet vs. Pkt in Monte Carlo data.

9.3.2 Jet Response vs. k? Jet Momentum

The jet response, Rjet, is obtained by correcting the EC jets by Fcryo, adjusting the

event E/Tby the change in jet momentum and applying the MPF method described

in the previous chapter. The average Rjet is measured in bins of E 0 ranging from 10

to 450 GeV for central jets and 100 to 600 GeV for forward jets. The average k? jet

momentum (corrected for the o�set and cryostat factor) is also measured in these

E 0 bins. Then, the average Rjet values are plotted versus the average Pkt values and

the functional form,

Rjet(E) = a+ b � ln(E) + c � ln2(E) ; (9.2)

is �t to this data (Figure 9.2. The results of the �t are shown in Table 9.2.

9.4 Monte Carlo Closure

We apply the corrections described above to k? jets reconstructed from the Monte

Carlo calorimeter information. First we subtract the o�set from Pkt then we divide

by the Monte Carlo cryostat factor and Rjet. We match the calorimeter (meas) and

particle (ptcl) jets to within a distance of 1.0 in � � � space. Figure 9.3 shows

the ratio of the corrected calorimeter jet momentum, Pmeas
kt , to the corresponding
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Figure 9.2: Rjet vs. Pktin Monte Carlo data. Circles represent CC jets and squares
represent EC jets.
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particle jet momentum, P ptcl
kt , for calorimeter jets in the CC, j�measj < 0:7. The

average closure is determined by a constant �t and found to be 1:002� 0:001

Figure 9.4 shows the ratio of the corrected calorimeter jet momentum, Pmeas
kt ,

to the corresponding particle jet momentum, P ptcl
kt , for calorimeter jets in the EC,

1:8 < j�measj < 2:5. The average closure is found to be 1:015�0:003. No out of cone

showering correction, Rcone, was applied to cone jets and this can easily explain the

de�ciency in Figure 9.4.

It is arguable whether the deviation from unity of the closure ratios (0.2% in the

CC and 1.5% in the EC) is signi�cant, and there is no evidence of further excess

going farther forward as is shown in Figure 9.5.

The most plausible explanation we have for the small excess in the forward region

is that it is due to misclustering, energy incorrectly transferred from one jet to

another due to calorimeter showering. We have no direct way of determining this

e�ect from data. It is reasonable to expect, however, that misclustering should be a

second order e�ect compared with the out-of-cone showering losses observed in the

case of cone jets. This is because misclustering would only occur when two or more

jets are close to each other and by using vector summed momentum instead of scalar

summed energy, the jet PT contribution from the fraction of the shower at the edge

of a jet is greatly reduced.

As a result of this study, we assign an error of 1% in the CC, j�j <1.0, increasing

linearly to 1.5% at j�j >2.0, and then to 5% at �=3.0. Above this the error remains

at at 5% (see Figure 9.6).
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Figure 9.3: Monte Carlo Closure in CC. The ratio of the corrected calorimeter jet
momentum to the corresponding particle jet momentum in the central region. Circles
are for k? jets and squares are for cone jets. Energy is compared for cone jets. The
dashed line is a constant �t to the k? jet closure.
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Figure 9.4: Monte Carlo Closure in EC. The ratio of the corrected calorimeter jet
energy to the corresponding particle jet energy in the forward region. Circles are for
k? jets and squares are for cone jets. The dashed line is a constant �t to the k? jet
closure.
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Figure 9.5: Monte Carlo Closure in EC. The ratio of the corrected calorimeter jet
energy to the corresponding particle jet energy in the far forward region, VEC,
de�ned by 2:5 < j�measj < 3:5.
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Figure 9.6: k? algorithm dependent correction, Rkt. Errors are shown as dotted
lines.
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Chapter 10

k? Momentum Calibration

Summary

To recapitulate, the method for correcting k? jet momentum uses the following re-

lation

P ptcl
jet =

Pmeas
jet � EO(�;L; PT )

Rjet(�; P )
; (10.1)

The calibration is an average correction, integrated over all jet quantities except

energy and pseudorapidity. Jets pointing to ' cracks, or with average characteristics

di�erent from those in the -jet sample, may need a di�erent correction.

The correction is accurate for k? jets with PT >15 GeV and j�j <3. The poor

knowledge of the calibration in the range PT <15 GeV is taken into account with a

rapidly increasing error below this threshold.

The calibration is based on Run Ib data taken in p�p collisions at
p
s = 1.8 TeV.

� O�set: the total o�set, EO(�;L) has contributions from physics underlying
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event, Oue and an o�set due to uranium noise and pile-up, Ozb. Oue and Ozb

were derived from a sample of Monte Carlo events with D� data events over-

layed. Oue is parameterized as a function of �. Above j�j >1.0, we apply a

correction based on the � dependence of the cafix5.1 correction but normal-

ized in the central region to our result. Ozb is parameterized as a function of

�, L, and PT . For j�j >1.0, we apply a correction based on the � dependence

of the sample generated at 30< PT <50 GeVat L = 5 � 1030pb�1sec�1 but

normalized in the central region as a function of L and PT .

� Response (� dependence): the cryostat factor is adjusted for the D�FIX

corrections, FN
cry=0.986�0.006 and F S

cry=0.977�0.006. The ICR � dependent

correction was derived using jet-jet data. It is applied to � bins in units of 0.1

and parametrized as a function of PT in each bin. We assign a 1% error to

the correction based on these values and introduce an additional � dependent

error that turns on at j�j =2.5 and increases linearly up to a 3% at j�j =3.

� Response (energy dependence): the cafix5.1 jet response as a function

of E 0 was taken and multiplied by the D�FIX CC factor of 1.0496 to accom-

modate this correction in the k? jet data. E 0 was mapped to k? jet P and the

jet response is �t as a function of k? jet P above 30 GeV. Below 35 GeV jet

momentum, there is an additional correction to accommodate the deviation

from the extrapolated �t. Below 35 GeV jet PT , there is an additional error to

account for the uncertainty in the jet response (see Figure 8.13b).

� Misclustering: No correction is applied, but an error is assigned to accom-

modate misclustering of energy.
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� Monte Carlo: The correction is derived from a HERWIG sample processed

through showerlib and reconstructed with RECO V12. At present, there is

no correction for variations in the ICR region.

10.1 Summary Plots of Corrections and Errors

In this section we provide some summary plots to illustrate the size of the jet correc-

tions and errors as a function of jet PT and pseudorapidity. For the following plots,

luminosity was set to 5 � 1030 cm�1sec�1. Figures 10.1 - 10.3 show the correction

and errors as a function of k? jet PT for 3 di�erent � regions. In the �=1.2 plots,

Figure 10.2, the EM, CH, FH, and ICR fractions were taken as averages of values

found in D� jet data. The uctuations at large energies are due to low statistics

in narrow PT bins. Figures 10.4 and 10.5 show the full correction and errors as a

function of �. Here also, the EM, CH, FH, and ICR fractions are taken as averages

of values found in data.
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Figure 10.1: Corrections and Errors for �Ktjet =0.0. Top: Nominal, high, and low
correction factors. Bottom: high and low fractional errors.
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Figure 10.2: Corrections and Errors for �Ktjet =1.2. Top: Nominal, high, and low
correction factors. Bottom: high and low fractional errors.
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Figure 10.3: Corrections and Errors for �Ktjet =2.0. Top: Nominal, high, and low
correction factors. Bottom: high and low fractional errors.
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Figure 10.4: Corrections and Errors versus �Ktjet, k? Jet PT = 20 GeV. The to-
tal correction and error are both shown as well as the eta dependence of several
individual components of the jet scale error.
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Figure 10.5: Corrections and Errors versus �Ktjet, k? Jet PT = 100 GeV. The to-
tal correction and error are both shown as well as the eta dependence of several
individual components of the jet scale error.
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Chapter 11

R32 Preliminary Results

Now that we have calibrated the k? jet momentum, it is possible to make a very

preliminary experimental measurement of R32 using the k? jet algorithm. Shown in

Figure 11.1 is a measurement of R32 as a function of HT3 using D� data. Jets are

corrected for the momentum scale, and the errors reect statistical uncertainty only.

HT3 is de�ned as the sum of the PT of the 3 highest PT k? jets in an event,

HT3 =
3X

i=1

PT i : (11.1)

The number of jets in a given event is equal to the number of k? jets with PT i >

fcut�HT3. R32 is measured as the ratio of events with 3 or more jets to events with

2 or more jets,

R32 =
��3 jets

��2 jets
: (11.2)

Because we choose fcut to avoid cases where only one jet passes the cut, virtually all

events have at least 2 jets. So R32 can also be thought of as the fraction of events
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with 3 or more jets.

Figure 11.1: R32, vs. HT3. Errors are statistical only. Errors in Monte Carlo Data
are the weighted statistical errors.

At this time, we have not made a comparison to an O�3
s calculation. For com-

parison, the R32 is measured using Herwig Monte Carlo data (version 5.8) at the

hadron level. This is the same sample of events used to determine fcut = 0:15 in

Chapter 5. The Herwig data are consistently higher than the D� data. However,

no systematic studies (other than the momentum calibration) have been performed

on the D� data. So at this point, it is extremely di�cult to draw any conclusions.
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Appendix A

Photon and Jet Triggers

A.1 Photon Triggers

The photon triggers we use were designed for direct photon measurements and span

the ET range from 6 GeV through 60 GeV. At Level 1 (the hardware trigger), all

photon triggers require at least one calorimeter trigger tower (0:2� 0:2 in � � �) to

have ET above some threshold. The thresholds used for various triggers are shown

in Table A.1. When an event passes a level 1 trigger, a list of towers satisfying the

level 1 criteria is sent to the Level 2 framework for further analysis.

The Level 2 software triggers have di�erent requirements, but they all share

the same algorithm to identify photon candidates [56]. The algorithm begins by

identifying the most energetic cell in the 3rd layer of the EM calorimeter in a tower

that passed the level 1 threshold. The ET in the cells within �� ��� = 0:3� 0:3

is summed in the EM and FH1 (1st layer of the �ne hadronic calorimeter). To

determine whether or not this is a desirable photon candidate, the following criteria
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Trigger Level 1 Level 2
Name Threshold Threshold

(GeV) (GeV)
GAM 6 ISO GAM 2.5 6.0
GAM 14 ISO GAM 7.0 14.0
GAM 20 ISO GAM 7.0 20.0

EM1 GIS 14.0 25.0
EM1 GIS HIGH 14.0 40.0

EM1 ESC 14.0 60.0

Table A.1: Triggers used in the photon event selection. Additional ET cuts are
applied o�ine.

are imposed on this cluster:

� The ET of the candidate cluster must be above the thresholds shown in Ta-

ble A.1.

� The hadronic energy of the cluster (contained in FH1) must be less than 10%

of the total energy.

� The energy deposited in the EM3 layer must be between 10 and 90 percent of

the total.

� The shower shape of the cluster in the EM3 layer is required to be consistent

with electron shower shapes in test beam data. This is measured by taking

the di�erence between the radial moments in 0:5� 0:5 and 0:3� 0:3 windows

around the axis of the cluster. The di�erence is required to be below some

value which varies as a function of �.
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� A cut, fiso, is made to ensure that the photon is isolated from other activity,

Er=:4 � Ecluster

Ecluster
< fiso ; (A.1)

where Er=:4 denotes the energy contained in a cone of radius .4 (�� � space).

fiso = 15% for all level 2 �lters except GAM 6 ISO GAM where it is set to

30%

A.2 Jet Triggers

The inclusive jet triggers were designed to accept events with 1 or more jets with

jet ET above some threshold. At Level 1 (the hardware trigger), there are two types

of jet triggers. One type requires a trigger tower (0:2 � 0:2 in � � �) to have ET

above some threshold. The other type requires a large tile (0:8 � 1:6 in � � � or

4 � 8 in trigger towers) to be above some ET threshold. All of the triggers used

in this thesis required the second type (large tiles) except for the JET MIN trigger

which requires a trigger tower. The thresholds used for various triggers are shown

in Table A.2. When an event passes a level 1 trigger, a hot tower list is sent to the

Level 2 framework for further analysis. For JET MIN, the hot towers are simply all

the trigger towers with ET > 3 GeV. For the large tile type triggers, the hot towers

are the ET weighted centers of the large tiles with ET > 6 GeV.

Below is a brief overview of the workings of the level 2 jet �nder software package,

L2JETS, which identi�es jet candidates.

1. L2JETS receives a hot tower list from the Level 1. The hot tower list is a list
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Trigger Level 1 Level 2
Name Threshold Threshold

(GeV) (GeV)
JET MIN 3.0 20.0
JET 30 15.0 30.0
JET 50 25.0 50.0
JET 85 35.0 85.0

JET MAX 35.0 115.0

Table A.2: Triggers used in jet event selection. JET MIN required a trigger tower
(versus a large tile) at level 1. Additional ET cuts are applied o�ine.

of 'candidate' trigger towers. In run 1b, there were two types of candidates:

those from trigger tower (0:2� � 0:2�) type triggers and those from large tile

(0:8��1:6� or 4�8 trigger towers) type triggers. The trigger tower candidates

are simply trigger towers whose total (EM + Hadronic) ET is greater than

some set of 'seed' thresholds The position of a large tile candidate is the trigger

tower(0:2��0:2�) corresponding to the ET weighted center of a large tile(0:8��

1:6�) whose total ET is greater than the seed threshold. These 'seed' thresholds

are not to be confused with the thresholds necessary to pass the level 1 trigger

(i.e. JET 30 requires 1 large tile with ET > 15 GeV and the level 2 seed

requirement is large tile ET > 6 GeV). The hot tower list is ordered in ET .

2. The �lters are considered in the order in which they appear in the trigger list.

For a given level 2 �lter, the seed candidates in the hot tower list are considered

for this particular �lter. A 1:4��1:4� box is drawn around the seed tower and

the ET weighted center of this box will become the level 2 jet center.

3. All calorimeter towers (:1� � :1�) within .7 of the L2 jet center that are not

agged as used in a previous jet are summed in ET , EM ET and the � � �
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RMS size is found.

4. If the ET of the calorimeter tower sum is above the level 2 threshold (see

Table A.2), the event passes and all trigger towers and calorimeter towers

within .7 of the L2 jet center are agged as used.

5. Return to step 2. At any point, if the trigger tower considered has been agged

as used, the L2 jet it is associated with is considered. If this L2 jet ET is above

threshold, the event passes.
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Appendix B

Cone Jet O�set Comparison

The o�sets for the cone algorithm implemented in cafix5.1 were derived using

density contributions multiplied by the area (in � � � space) of the cone jets. The

densities were measured using the same data samples we overlayed on the Monte

Carlo data. We study the o�set in cone jets, with the aim of understanding our

method, and to cross-check the results against the o�set densities of cafix5.1. We

calculate the densities Due and Dzb as D = O=1:5, where 1.5 is the jet area in � � �

space for an R = 0:7 cone and O is the o�set (Oue or Ozb) as measured using the

method described in Chapter 7.

Here we will use the same notation as is used for k? jets in Chapter 7, but we

will be referring to cone jets reconstructed with R =0.7 instead of k? jets.

xx 0.7 cone jet ET in Monte Carlo with no overlay.

m0 0.7 cone jet ET in Monte Carlo with MB overlay.

zn 0.7 cone jet ET in Monte Carlo with ZBnoL� overlay.
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zL 0.7 cone jetET in Monte Carlo with ZB overlay at luminosityL = L�1030cm�2sec�1

(e.g. z5 for L = 5 �1030cm�2sec�1).

B.1 Smeared Versus Unsmeared Quantities

Figure B.1 shows the result for Ozb obtained by two di�erent methods:

1. for the two leading jets in sample z5 with 30 GeV<ET <50 GeV, we �nd the

corresponding jet in xx and take the ET di�erence.

2. same as above but starting with the two leading jets in xx, and then �nding

the corresponding ones in z5.

Although we would like to select our jets by placing cuts on the sample with overlayed

noise, z5, method (1) is wrong because it arti�cially selects upwards uctuations in

the o�set, which smear jets from the Exx < 30 into the Ez5 > 30 region, while

rejecting the corresponding downwards uctuations, from Exx > 30 into Ez5 < 30.

Method (2) does not su�er from this bias because we cut on xx jets, which are not

subject to uctuations in overlayed noise.

It is not however clear that Method (2) is the one we want. By selecting xx jets

with 30 GeV<ET <50 GeV, we are calculating the average additional energy added

to a jet generated in this range. We will call it the \unsmeared" o�set. On the other

hand, by selecting z5 jets with 30 GeV<ET <50 GeV, we obtain the average o�set

for the jets actually found in this energy range. When we take into account the ET

dependence of the spectrum, we realize that this \smeared" o�set will be much larger
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Figure B.1: The 0.7 cone jet o�set density, Dzb, as obtained by selecting the leading
jets either in the z5 (full boxes) or in the xx sample (full circles). The open circles
are from CAFIX 5.1.
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because many more jets are uctuations with a positive o�set from below 30 GeV,

than uctuations with a negative o�set from above 50 GeV. A proper representation

of the physical ET spectrum is thus essential.

If we want to calculate o�sets by placing cuts on the noise overlayed z5 jets, we

need to weigh the generated jets to suit our physical needs. Figure 7.4 shows the

ET distribution of the reconstructed k? jets without noise. In order to calculate the

\unsmeared" o�set, weights have to be chosen so that the distribution of generated

jets without noise is at. The resulting o�sets are shown in Figure B.2 together

with those calculated using the unbiased Method (2) above, with cuts on the xx jets

(and no event weighing). The results are very similar indicating that we understand

the e�ect of weighting, and that a at distribution of generated jets does yield the

unsmeared o�sets. This is an important cross-check of the method, before we weigh

jets to the physical ET dependence for the smeared case.

Figure B.3 gives the results for the smeared o�set. The procedure is identical

to the unsmeared case in Figure B.2, but now we weigh the events to get an ET
�5

dependence instead of a at one. The steeply falling ET
�5 dependence results in

the o�sets being much higher. For a given smeared, z5, jet ET there is more

contribution from low ET unsmeared, xx, jets than from high ET unsmeared jets.

Thus, the o�set, O5
zb = z5�xx, (and density) will tend to be larger than in the case

of a at ET distribution.

There remains to be discussed whether smeared or unsmeared o�sets should be

used as the correction. Note that the approach followed in cafix5.1 corresponds to

unsmeared o�sets, as they are obtained by subtracting energy densities in towers,
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Figure B.2: Unsmeared Dzb o�set vs. ET in �ve � ranges for 0.7 cone jets. The cut
in ET is applied either to the raw xx jets (stars), or to z5 jets (full circles) weighed
to a at distribution in ET . The result from cafix5.1 (open box) is shown for
comparison on the left, but no ET is associated with it.
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Figure B.3: The smeared (open circles) and unsmeared (full circles) Dzb o�set for
0.7 cone jets. Both sets of points di�er only by the weight assigned to the generated
jets. The open box shows for reference the result from the JES D0Note.
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without reference to jets. To the extent that the resolution correction is performed at

a later stage in physical analyses, we will focus on this note on the unsmeared o�set.

This method provides an interesting alternative to studying the e�ect of smearing,

and the possibility remains open for further studies with the smeared o�set.

For the case of the underlying event, obtained as Oue = m0 � zn, we select the

two leading jets in xx, �nd the associated jets in m0 and zn, and perform the ET

subtraction, which again corresponds to the unsmeared o�set. Then the o�set, Oue

is divided by the cone jet area, 1.5, to obtain the density, Due.

B.2 Dependence of the O�set on ET

We have studied the ET dependence of Dzb and Due for the unsmeared case, as it

allows comparison with the cafix5.1 results.

Figure B.4 shows our results for Due as a function of 0.7 cone jet ET for several

jet � bins in the central region. There appears to be no ET dependence and the

values are consistent with those shown in [45].

Figure B.2 shows our results for Dzb (L = 5 �1030cm�2sec�1) as a function

of 0.7 cone jet ET for several jet � bins in the central region. It is somewhat

surprising to see a large drop with ET for Dzb, while not for the underlying event,

Due. This can be explained if the occupancy (the fraction of readout cells in a jet)

increases with energy. In this case, the noise contribution goes down because the

relative importance of zero suppression diminishes. Fig B.5 shows the occupancy as

a function of eta for various ET bins. This is consistent with occupancies measured

165



Physics Underlying Event Density, Due
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Figure B.4: Dependence of Due on ET for cone jets. The result from cafix5.1 is
shown for reference
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in MB data jets (Figure 7.5) and Monte Carlo with MB overlay (Figure 7.6).
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Figure B.5: Jet energy dependence of occupancy for zero bias luminosity 5 and
R = 0:7 cone jets.

In cafix5.1, the ET density contribution of the zero suppression cut within a

jet, �jet, was related to the density contribution in ZB data, �ZB, by

�jet = �ZB
FZB
Fjet

; (B.1)

where FZB and Fjet are the corresponding occupancy factors for ZB data and jets

167



respectively. In cafix5.1, the occupancies were assumed to be constant as a function

of jet ET . Figure B.5 shows the occupancy in the central region on a much smaller

scale than is shown in [45] and one can see some dependence on ET . This ET

dependence can only account for 30% of the drop in Figure B.2. The relation in

Equation B.1 is empirical and it was checked only for low ET jets. Although

we believe our measurement to be more accurate than the empirical formula, the

remaining 70% will be taken as a systematic error to account for the discrepancy.

In cafix5.1, the o�set is extracted from zbias events and corrected for the occu-

pancy in a jet environment assuming no change in the average energy of an occupied

cell. This assumption is probably correct between a zbias event and a low energy

jet, but only approximate as the energy of the jet increases.

If there were no zero suppression, one would certainly expect no ET dependence

in the o�set for 0.7 cone jets. Because the area in � � � space is �xed for cone jets,

the contribution should be the same regardless of jet ET . Because zero suppression

truncates both positive and negative energies and the noise is not gaussian, it is

di�cult to assess its e�ects.

This is not the case for Due, because the underlying event energy addition is

always positive. Figures B.6 and B.7 show the energy densities for m0-xx and zn-

xx. Both have noise contribution and do show a drop with ET . The underlying

event contribution, Due (shown in Figure B.4), is the di�erence of these two, m0-

zn, and, therefore, the noise contribution (including zero suppression e�ects) cancel.

Therefore, it is reasonable that Due is ET independent.
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Figure B.6: Dependence of m0-xx on ET for cone jets
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Zero Bias no L∅  Density, DZB
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Figure B.7: Dependence of zb-xx on ET for cone jets. The dependence is the same
as in the previous �gure, and cancels when getting Due by taking the di�erence
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B.3 Dependence of the O�set on Luminosity

We have studied the luminosity dependence of the unsmeared o�set for 0.7 cone jets

due to noise, pile-up and mulitiple interactions. Figure B.8 shows Dzb as a function

of jet � for several luminosities. We use low ET jets for this study (30<ET <50)

to compare with cafix5.1. The agreement between our values and cafix5.1 is

excellent in this ET range.
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Gev jets (our result depends on jet energy). Full circles are from cafix5.1, for
comparison.
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Appendix C

Showering E�ects on the Jet

Response

The MPF method uses balance of transverse momentum, PT , (not energy) to measure

the jet response of the detector. Therefore, the correction should be applied to

momentum. If there were no showering e�ects in the calorimeter, the correction for

energy and momentum would be identical. However, we can think of at least two

mechanisms that make this not so. In either case, the MPF method should give us

the correct momentum jet response.

First, a jet of particles (not massless) showers in the calorimeter. The particles

in the center of the shower (1 in Figure C.1a) tend to have more energy than the

particles around the perimeter of the shower (2 and 3). Particles with higher energy

have a better response, and, therefore the particle response is higher in the center

than at the edges (R1 > R2; R3). Because the response is not uniform over the entire

shower and because mpf uses PT balance (not ET ), we will tend to under correct
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Figure C.1: Showering e�ects in the MPF method. (a) A photon is balanced by
three particles, 1, 2, and 3, in the transverse plane. E1 > E2; E3 and R1 > R2; R3.
(b) The 2nd and 3rd particles are deected away from the jet axis in the calorimeter.
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Energy using the MPF method. If the response were uniform over the shower, the

energy and momentum correction would be identical. This leads to undercorrection

when correcting energy using MPF. But the momentum is correctly corrected.

To illustrate this, Figure C.1a depicts a simple event where a photon is balanced

by a jet of 3 particles in the transverse plane. Particle 1 lies along the jet axis which

is back to back with the photon. Let us assume the 3 particles are massless (i.e.

E = P ) and the event takes place in the transverse plane (i.e. ET = E). Then, the

particle jet's energy can be written as

Eptcl = E1 + E2 + E3 ; (C.1)

and the momentum is given by

Pptcl = E = E1 + E2cos�12 + E3cos�13 : (C.2)

Given particle responses of R1 > R2; R3, the measured jet quantities are given by

Emeas = R1E1 +R2E2 +R3E3 (C.3)

and

Pmeas = R1E1 +R2E2cos�12 +R3E3cos�13 : (C.4)

The ratio of measured to particle jet quantities is the true energy/momentum re-

sponse for the jet. If the particle response is uniform over the jet, R = R1 = R2 = R3,

the energy and momentum jet response would be identical, R.
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The MPF jet response is given by

Rmpf = 1 +MPF where MPF =
~E/T � n̂
ET

: (C.5)

Substituting for the event ~E/T ,

~E/T = �
�
R1

~P1 +R2
~P2 +R3

~P3 + ~P
�
; (C.6)

yields

Rmpf =
R1E1 +R2E2cos�12 +R3E3cos�13

E

Rmpf = RP =
Pmeas

Pptcl
: (C.7)

The jet response derived using the MPF method is identical to the true momentum

jet response.

For the energy jet response, let us assume particles 2 and 3 have equal response,

R2 = R3 = R and R1 = R+ �. Then the energy and momentum jet response will be

RE =
�E1

Eptcl
+R

and RP =
�E1

Pptcl
+R (C.8)

Since Eptcl > Pptcl, the energy jet response will be less than the momentum jet

response (RE < RP = Rmpf ). Thus, jets will be undercorrected in energy using

Rmpf .

The second mechanism which would make the energy jet response unequal to the
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momentum jet response occurs when particles get deected in the detector and the

detector absorbs the recoil such that the recoil is not measured in the calorimeter.

The net result is a wider jet at the calorimeter level than at the particle level.

This is essentially the mechanism described in [55]. This means that the measured

Emeas � Pmeas is greater than the true Eptcl � Pptcl. Therefore, the energy of the

jet needs less correction than the momentum. Since the MPF method measures the

momentum jet response, the energy will be over corrected using MPF method. But

again, the momentum is correctly corrected.

Figure C.1b shows an example of this where a photon is balanced by 3 show-

ered particles in the transverse plane. The true E and P are the same as above

(Equations C.1 and C.2. The measured E is also the same (Equation C.3). In this

scenario, the angles between 1 and 2, and 1 and 3, �13, are larger than in the previous

example (�meas
12 > �true12 and �meas

13 > �true13 ). Therefore, the measured P will be less

than it was in the previous example.

A similar exercise will also show that Rmpf = RP and that RE > RP . In this

case, jets will be overcorrected in energy using Rmpf . And again, Rmpf gives us the

correct jet momentum response.

Both these showering e�ects come into play with cone jets because they use scalar

sum Et. Because we use vector sum momentum for kt jets, we should not be a�ected

by these biases. We do use Snowmass recombination in the preclustering, however,

so there may be a small e�ect. This is discussed in section 9.4.
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